Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

PeerJ

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States; Center for Environmental Science and Engineering, University of Connecticut, Storrs, CT, United States.

Published: October 2016

Background: Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes.

Methods: We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms.

Results: The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition.

Discussion: Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068362PMC
http://dx.doi.org/10.7717/peerj.2551DOI Listing

Publication Analysis

Top Keywords

functional phylogenetic
44
bat communities
20
landscape characteristics
16
taxonomic functional
12
communities human-modified
12
functional
11
phylogenetic
11
environmental
8
drivers taxonomic
8
phylogenetic characteristics
8

Similar Publications

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

Sporadic epidemics of coxsackievirus A4 (CVA4) have been reported worldwide. However, the lack of the whole genome sequence has restricted the study of the gene characterization and evolution of CVA4. In this study, four whole genome sequences and 17 VP1 sequences of CVA4 identified from Linyi, northern China, in summer 2024 were used for genetic characterization and phylogenetic analysis.

View Article and Find Full Text PDF

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M.

View Article and Find Full Text PDF

The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!