Highly divergent mussel lineages in isolated Indonesian marine lakes.

PeerJ

Department of Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.

Published: October 2016

Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of spp. harbored four deeply diverged lineages (14-75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2-6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1-0.2%), we suggest that this may have resulted from divergence due to isolation of founder populations after the formation of the lakes (6,000-12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068364PMC
http://dx.doi.org/10.7717/peerj.2496DOI Listing

Publication Analysis

Top Keywords

marine lakes
20
marine
8
shell shape
8
harbored lineage
8
lakes
7
populations
6
highly divergent
4
divergent mussel
4
lineages
4
mussel lineages
4

Similar Publications

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

PLoS One

January 2025

Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides.

View Article and Find Full Text PDF

Conductivity is an important indicator of the health of aquatic ecosystems. We model large amounts of lake conductivity data collected as part of the United States Environmental Protection Agency's National Lakes Assessment using spatial indexing, a flexible and efficient approach to fitting spatial statistical models to big data sets. Spatial indexing is capable of accommodating various spatial covariance structures as well as features like random effects, geometric anisotropy, partition factors, and non-Euclidean topologies.

View Article and Find Full Text PDF

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!