Loss of lamin B receptor is necessary to induce cellular senescence.

Biochem J

Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.

Published: January 2017

Cellular transition to senescence is associated with extensive chromatin reorganization and changes in gene expression. Recent studies appear to imply an association of lamin B1 (LB1) reduction with chromatin rearrangement in human fibroblasts promoted to senescence, while the mechanisms and structural features of these relationships have not yet been clarified. In this work, we examined the functions of LB1 and the lamin B receptor (LBR) in human cancer cells. We found that both LB1 and LBR tend to deplete during cancer cell transfer to senescence by γ-irradiation. A functional study employing silencing of LBR by small hairpin ribonucleic acid (shRNA) constructs revealed reduced LB1 levels suggesting that the regulation of both proteins is interrelated. The reduced expression of LBR resulted in the relocation of centromeric heterochromatin (CSH) from the inner nuclear membrane (INM) to the nucleoplasm and is associated with its unfolding. This indicates that LBR tethers heterochromatin to INM in cycling cancer cells and that LB1 is an integral part of this tethering. Down-regulation of LBR and LB1 at the onset of senescence are thus necessary for the release of heterochromatin binding to lamina, resulting in changes in chromatin architecture and gene expression. However, the senescence phenotype was not manifested in cell lines with reduced LBR and LB1 expression suggesting that other factors, such as deoxyribonucleic acid (DNA) damage, are needed to trigger senescence. We conclude that the primary response of cells to various stresses leading to senescence consists of the down-regulation of LBR and LB1 to attain reversal of the chromatin architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20160459DOI Listing

Publication Analysis

Top Keywords

lbr lb1
12
lamin receptor
8
senescence
8
gene expression
8
lb1
8
lbr
8
cancer cells
8
cells lb1
8
down-regulation lbr
8
chromatin architecture
8

Similar Publications

Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction.

View Article and Find Full Text PDF

Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence.

Cells

February 2018

Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.

Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells.

View Article and Find Full Text PDF

Loss of lamin B receptor is necessary to induce cellular senescence.

Biochem J

January 2017

Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.

Cellular transition to senescence is associated with extensive chromatin reorganization and changes in gene expression. Recent studies appear to imply an association of lamin B1 (LB1) reduction with chromatin rearrangement in human fibroblasts promoted to senescence, while the mechanisms and structural features of these relationships have not yet been clarified. In this work, we examined the functions of LB1 and the lamin B receptor (LBR) in human cancer cells.

View Article and Find Full Text PDF

p29, a newly identified Kaposi's sarcoma-associated herpesvirus (KSHV) protein, is the product of ORF67, the positional homolog of the conserved herpesvirus protein UL34. Like its homologues in other herpesviruses, p29 is expressed early during viral lytic cycle, and is localized on the nuclear rim. Upon chemical induction of viral replication in primary effusion lymphoma cells, p29 interacts with p33, encoded by ORF69, the positional homolog of the conserved herpesvirus protein UL31, and both proteins colocalize on the nuclear membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!