Despite significant progress, resistance to chemotherapy is still the main reason why cancer remains a deadly disease. An attractive strategy is to target the collateral sensitivity of otherwise multidrug resistant (MDR) cancer. In this study, our aim was to catalog various compounds that were reported to elicit increased toxicity in P-glycoprotein (Pgp)-overexpressing MDR cells. We show that the activity of most of the serendipitously identified compounds reported to target MDR cells is in fact cell-line specific, and is not influenced significantly by the function of Pgp. In contrast, novel 8-hydroxyquinoline derivatives that we identify in the National Cancer Institute (NCI) drug repository possess a robust Pgp-dependent toxic activity across diverse cell lines. Pgp expression associated with the resistance of the doxorubicin-resistant Brca1;p53 spontaneous mouse mammary carcinoma cells could be eliminated by a single treatment with NSC57969, suggesting that MDR-selective compounds can effectively revert the MDR phenotype of cells expressing Pgp at clinically relevant levels. The discovery of new MDR-selective compounds shows the potential of this emerging technology and highlights the 8-hydroxyquinoline scaffold as a promising starting point for the development of compounds targeting the Achilles heel of drug-resistant cancer. Mol Cancer Ther; 16(1); 45-56. ©2016 AACR.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-16-0333-TDOI Listing

Publication Analysis

Top Keywords

compounds reported
8
mdr cells
8
mdr-selective compounds
8
compounds
6
cancer
6
identification validation
4
validation compounds
4
compounds selectively
4
selectively killing
4
killing resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!