Lignocellulosic biomass is an abundant and renewable resource for biofuels and bio-based chemicals. Vanillin is one of the major phenolic inhibitors in biomass production using lignocellulose. To assess the response of Corynebacterium glutamicum to vanillin stress, we performed a global transcriptional response analysis. The transcriptional data showed that the vanillin stress not only affected the genes involved in degradation of vanillin, but also differentially regulated several genes related to the stress response, ribosome/translation, protein secretion, and the cell envelope. Moreover, deletion of the sigH or msrA gene in C. glutamicum resulted in a decrease in cell viability under vanillin stress. These insights will promote further engineering of model industrial strains, with enhanced tolerance or degradation ability to vanillin to enable suitable production of biofuels and bio-based chemicals from lignocellulosic biomass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070772 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164955 | PLOS |
J Mater Chem B
January 2025
Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).
View Article and Find Full Text PDFBrain Commun
November 2024
Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
Acute and chronic stress markedly affects behavior by triggering sympathetic nervous system activation and several hypothalamus-pituitary-adrenal-dependent responses. Brain regions of the limbic system are responsible for the regulation of stress response, and different reports have demonstrated that their activity can be influenced by olfactory stimuli. Here we report that, in mice exposed to acute restraint stress, olfactory stimulation employing a combination of three odorants, i.
View Article and Find Full Text PDFToxicol Rep
December 2024
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
Electronic cigarettes (ECs) have been shown to adversely impact the human eye's retinal pigment epithelium (RPE). Flavored e-liquids induced cytotoxicity in unpigmented human ARPE-19 cells independent of nicotine's presence in my previous study. In the current study, human ARPE-19 cells pigmented by sepia melanin were employed to examine the effects of four flavoring chemicals, vanillin, menthol, furanone, and cinnamaldehyde, and EC vehicles propylene glycol (PG)/vegetable glycerin (VG) ratios (0:100, 80:20, 100:0 % v/v), on metabolic activity, membrane integrity, oxidative stress, and wound healing capacity of these cells.
View Article and Find Full Text PDFActa Biomater
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC.
View Article and Find Full Text PDFJ Biotechnol
November 2024
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!