Recent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction. Second, we tested the hypothesis that navigation under these different levels of restriction would use additional attentional resources. Normally sighted participants walked on novel real-world paths wearing goggles that restricted the field-of-view (FOV) to severe (15°, 10°, 4°, or 0°) or mild angles (60°) and then pointed to remembered target locations using a verbal reporting measure. They completed a concurrent auditory reaction time task throughout each path to measure cognitive load. Only the most severe restrictions (4° and blindfolded) showed impairment in pointing error compared to the mild restriction (within-subjects). The 10° and 4° conditions also showed an increase in reaction time on the secondary attention task, suggesting that navigating with these extreme peripheral field restrictions demands the use of limited cognitive resources. This comparison of different levels of field restriction suggests that although peripheral field loss requires the actor to use more attentional resources while navigating starting at a less extreme level (10°), spatial memory is not negatively affected until the restriction is very severe (4°). These results have implications for understanding of the mechanisms underlying spatial learning during navigation and the approaches that may be taken to develop assistance for navigation with visual impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070841 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163785 | PLOS |
Sensors (Basel)
January 2025
School of Information Engineering, China University of Geosciences, Beijing 100083, China.
Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.
View Article and Find Full Text PDFSensors (Basel)
January 2025
NUS-ISS, National University of Singapore, Singapore 119615, Singapore.
Recognizing the action of plastic bag taking from CCTV video footage represents a highly specialized and niche challenge within the broader domain of action video classification. To address this challenge, our paper introduces a novel benchmark video dataset specifically curated for the task of identifying the action of grabbing a plastic bag. Additionally, we propose and evaluate three distinct baseline approaches.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
Monitoring existing cracks is a critical component of structural health monitoring in bridges, as temperature fluctuations significantly influence crack development. The study of the Huai'an Bridge indicated that concrete cracks predominantly occur near the central tower, primarily due to temperature variations between the inner and outer surfaces. This research aims to develop a deep learning model utilizing Long Short-Term Memory (LSTM) neural networks to predict crack depth based on the thermal variations experienced by the main tower.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Physics and Electronics, Nanning Normal University, Nanning 530100, China.
Remote sensing change detection (RSCD), which utilizes dual-temporal images to predict change locations, plays an essential role in long-term Earth observation missions. Although many deep learning based RSCD models perform well, challenges remain in effectively extracting change information between dual-temporal images and fully leveraging interactions between their feature maps. To address these challenges, a constraint- and interaction-based network (CINet) for RSCD is proposed.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Conventional Fourier domain Optical Coherence Tomography (FD-OCT) systems depend on resampling into a wavenumber () domain to extract the depth profile. This either necessitates additional hardware resources or amplifies the existing computational complexity. Moreover, the OCT images also suffer from speckle noise, due to systemic reliance on low-coherence interferometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!