Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147038 | PMC |
http://dx.doi.org/10.1080/10937404.2016.1215772 | DOI Listing |
Annu Rev Food Sci Technol
January 2025
4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:
Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.
With mines extending deeper and rising surface temperatures, workers are exposed to hotter environments. This study aimed to characterize heat stress and strain in the Canadian mining industry and evaluate the utility of the Heat Strain Score Index (HSSI), combined with additional self-reported adverse health outcomes. An exploratory web-based survey was conducted among workers ( = 119) in the Canadian mining industry.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJ Integr Complement Med
January 2025
School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK.
Acta Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!