Certain species of Phlebotomine sandflies (Diptera: Psychodidae) are vectors of the protozoa which causes leishmaniasis. Sandflies are found breeding in enclosed places like caves. Thailand is a popular tourist destination, including for ecotourism activities like caving, which increases the risk of contact between tourists and sandflies. Surveillance of sandflies is important for monitoring this risk but identification of species based on morphology is challenged by phenotypic plasticity and cryptic diversity. DNA barcodes have been used for the identification of sandflies in Thailand. We collected sandflies using CDC light trap from four tourist caves in Northern Thailand. Female sandflies were provisionally sorted into 13 morphospecies and 19 unidentified specimens. DNA was extracted from the thorax and legs of sandflies and the DNA barcode region of cytochrome c oxidase I mtDNA amplified and sequenced. The specimens were sorted into 22 molecular operational taxonomic units (MOTU) based on the 145 DNA barcodes, which is significantly more than the morphospecies. Several of the taxa thought to be present in multiple caves, based on morphospecies sorting, split into cave-specific MOTU which likely represent cryptic species. Several MOTU reported in an earlier study from Wihan Cave, Thailand, were also found in these caves. This supports the use of DNA barcodes to investigate species diversity of sandflies and their useful role in surveillance of sandflies in Thailand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/24701394.2016.1214728 | DOI Listing |
Plant Divers
November 2024
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.
The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University Baoding China.
Background: The genus Pocock, 1901 previously included 25 known species and one subspecies from Asia, 12 species and one subspecies were reported in China.
New Information: Five new species of Pocock, 1901 from southern China are described: (♂♀) from Hainan, (♂♀) from Chongqing, (♂♀) from Hunan, (♂) from Sichuan and (♂♀) from south part of Shaanxi. DNA barcodes of the new species described herein are provided.
Sci Rep
January 2025
National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry, 201203, Shanghai, People's Republic of China.
In Traditional Chinese Medicine (TCM), the medicinal leech is vital for treatments to promote blood circulation and eliminate blood stasis. However, the prevalence of counterfeit leech products in the market undermines the quality and efficacy of these remedies. Traditional DNA barcoding techniques, such as the COI barcode, have been limited in their application due to amplification challenges.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
The Tianshan wild fruit forest region is a vital repository of plant biodiversity, particularly rich in the unique genetic resources of endemic medicinal plants in this ecological niche. However, human activities such as unregulated mining and excessive grazing have led to a significant reduction in the diversity of these medicinal plants. This study represents the first application of DNA barcoding to 101 medicinal plants found in the Tianshan wild fruit forests, using three genetic loci along with morphological identification methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!