Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively C-labeled choline with Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like H-C CP-REDOR (rotational-echo double resonance), H-C HETCOR (heteronuclear correlation), and H-Si-H double CP are employed to determine spatial parameters. The measurement of Si-C internuclear distances for selectively C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b03311 | DOI Listing |
J Magn Reson
December 2024
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:
The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.
View Article and Find Full Text PDFJ Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of California, Riverside, Chemistry, 501 Big Springs Rd, 92521, Riverside, UNITED STATES OF AMERICA.
Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mn = 13.3 kDa, Đ = 2.4,
Angew Chem Int Ed Engl
December 2024
Saarland University, Coordination Chemistry, Campus C 4.1, 66123, Saarbrücken, GERMANY.
We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexa-fluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF < C6H6 < C6F6 < cyclohexene < pyridine < benzaldehyde < anthraquinone. To understand this surprising order, the complexes' electronic structures were elucidated by nuclear magnetic resonance (NMR), single crystal X-Ray diffraction (sc-XRD), ultraviolet/visible (UV/Vis) electronic absorption, infrared (IR) vibrational, Pd L3-edge X-ray absorption (XAS), and X-ray photoelectron (XP) spectroscopic techniques, complemented by Density Functional Theory (DFT) calculations including energy decomposition (EDA-NOCV) and effective oxidation state (EOS) analyses.
View Article and Find Full Text PDFChem Asian J
December 2024
shandong university, chemistry, Shanda nanlu No.27, JInan, Shandong, jinan, CHINA.
The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!