The global mechanisms and associated molecular alterations that occur in drug-resistant mycobacteria are poorly understood. To address this, we obtain genomics data and then construct a genome-scale response network in isoniazid-resistant Mycobacterium smegmatis and apply a network-mining algorithm. Through this, we decipher global alterations in an unbiased manner and identify emergent vulnerabilities in resistant bacilli, of which redox response was prominent. Using phenotypic profiling, we find that resistant bacilli exhibit collateral sensitivity to several compounds that block antioxidant responses. We find that nanogram/milliliter concentrations of ebselen, vancomycin, and phenylarsine oxide, in combination with isoniazid, are highly effective against Mycobacterium tuberculosis H37Rv and three clinical drug-resistant strains. Dynamic measurements of cytoplasmic redox potential revealed a surprisingly diminished capacity of clinical drug-resistant strains to counteract oxidative stress, providing a mechanistic basis for efficient and synergistic mycobactericidal activity of the drug combinations. Ebselen and vancomycin appear to be promising repurposable drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.6b00004 | DOI Listing |
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFObjectives: This study aimed to investigate genotypic characteristics and drug resistance profiles of complex (Mtbc) strains isolated from patients with suspected tuberculosis (TB) in Gabon.
Methods: We performed whole genome sequencing of 430 Mtbc strains cultured between 2012 and 2022. Phylogenetic strain classification, genomic resistance prediction, and cluster analysis were also performed.
Infect Genet Evol
January 2025
Immunogenomics & Systems Biology group, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India. Electronic address:
Whole genome sequencing has been used to investigate the genomic diversity of M. tuberculosis in the northern and southern states of India, but information about the eastern part of the country is still limited. Through a sequencing-based strategy, this study seeks to comprehend the diversity and drug resistance pattern in the eastern region.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Medical Microbiology, Inonu University, Malatya, Türkiye. Electronic address:
Mycobacterium tuberculosis (M. tuberculosis) bacteria can cause oxidative stress and the production of inflammatory cytokines, creating an environment that enhances tumour formation, progression and metastasis. Epidemiological studies have found a link between lung cancer and tuberculosis (TB), but the cellular mechanism is still unclear.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!