The acaricidal effects of 55 strains of Metarhizium anisopliae (Metschnikoff) Sorokin, 1883 (Hypocreales: Clavicipitaceae) isolated from paddocks of cattle farms were evaluated in two Rhipicephalus microplus (Canestrini 1887) (Ixodida: Ixodidae) populations, of which one was multi-resistant and one was susceptible to chemical acaricides. Percentage mortality and reproductive efficiency indices in R. microplus were evaluated by adult immersion tests at a dose of 1 × 10 conidia/mL for each fungal strain. Some strains were selected to calculate lethal concentrations to kill 50% (LC ) and 99% (LC ) of engorged ticks. Strains MaV22, MaV26 and MaV55 induced 100% mortality in R. microplus on day 14. Strains MaV05, MaV09 and MaV22 caused mortality of >90% from day 12 onward in both tick populations. The most effective acaricidal fungal strain, MaV55, inhibited egg laying by 54.86 and 55.86% in acaricide-resistant and -susceptible R. microplus populations, respectively. None of the fungal strains had statistically significant effects on larval hatching. In conclusion, nine strains of M. anisopliae demonstrated high acaricidal effects against R. microplus and reduced its egg laying. No differences in acaricidal effects were observed between the two populations of ticks tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mve.12203 | DOI Listing |
Insects
January 2025
Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary.
Bird mites are parasites that feed on both wild and domesticated bird species, causing severe degradation in avian welfare. The chicken mite, in particular, is a widespread ectoparasite in poultry, responsible for several challenges faced by the poultry industry, including poor animal health, which causes significant economic losses. This review, based on our current knowledge, aims to provide a comprehensive insight into the biology and distribution of these mites, as well as their impact on poultry health and production.
View Article and Find Full Text PDFInsects
January 2025
Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Plant Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Nea Ionia, Magnesia, Greece.
Stored-product mites are important pests of stored products, while their presence in storage and processing facilities has a significant effect on public health. On the other hand, inert materials are promising alternatives to conventional pesticides in stored product protection and have provided very good results against storage insects. These formulations can be applied either directly on the product or on surfaces, as dusts or as slurry formulations.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Agriculture and Agri-Food Canada, London Research and Development Centre-Vineland Campus, Vineland Station, ON, Canada.
Cyclamen mite (Phytonemus pallidus) causes injury to new growth of strawberry plants and is difficult to control because it is protected by folded leaves and plant crowns. Since cyclamen mite is easily transferred from strawberry nurseries to fruiting fields, dipping transplants in biopesticides may reduce initial populations. However, cyclamen mite numbers at 1 and 3 months-after-planting, and yield and cyclamen mite injury to fruit in the following season did not differ among transplants immersed for 30 s in Captiva® Prime, EcoTrol® EC, Landscape Oil, SuffOil-X® or Kopa Insecticidal Soap or the untreated control.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major pest of various plants with a worldwide distribution. Extensive use of chemical pesticides has led to the development of resistance in this pest, making biological control agents a viable alternative for its management. The predatory mites, Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) are the most important predators of the two-spotted spider mites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!