In colorectal cancer, APC-mediated induction of unregulated cell growth involves posttranslational mechanisms that prevent proteasomal degradation of proto-oncogene β-catenin (CTNNB1) and its eventual translocation to the nucleus. However, about 10% of colorectal tumors also exhibit increased CTNNB1 mRNA. Here, we show in colorectal cancer that increased expression of ZNF148, the gene coding for transcription factor ZBP-89, correlated with reduced patient survival. Tissue arrays showed that ZBP-89 protein was overexpressed in the early stages of colorectal cancer. Conditional deletion of Zfp148 in a mouse model of Apc-mediated intestinal polyps demonstrated that ZBP-89 was required for polyp formation due to induction of Ctnnb1 gene expression. Chromatin immunoprecipitation (ChIP) and EMSA identified a ZBP-89-binding site in the proximal promoter of CTNNB1 Reciprocally, siRNA-mediated reduction of CTNNB1 expression also decreased ZBP-89 protein. ChIP identified TCF DNA binding sites in the ZNF148 promoter through which Wnt signaling regulates ZNF148 gene expression. Suppression of either ZNF148 or CTNNB1 reduced colony formation in WNT-dependent, but not WNT-independent cell lines. Therefore, the increase in intracellular β-catenin protein initiated by APC mutations is sustained by ZBP-89-mediated feedforward induction of CTNNB1 mRNA. Cancer Res; 76(23); 6877-87. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379474PMC
http://dx.doi.org/10.1158/0008-5472.CAN-15-3150DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
16
transcription factor
8
factor zbp-89
8
ctnnb1 mrna
8
znf148 gene
8
zbp-89 protein
8
induction ctnnb1
8
gene expression
8
ctnnb1
7
zbp-89
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!