Valuable synthetic routes to the Lycopodium alkaloid lycodine (1) and its unsymmetric dimers, complanadines A (4) and B (5), have been developed. Regioselective construction of the bicyclo[3.3.1]nonane core structure of lycodine was achieved by a remote functionality-controlled Diels-Alder reaction and subsequent intramolecular Mizoroki-Heck reaction. A key coupling reaction of the lycodine units, pyridine N-oxide (66) and aryl bromide (65), through C-H arylation at the C1 position of 66 provided the unsymmetric dimer structure at a late stage of the synthesis. This strategy greatly simplified the construction of the dimeric architecture and functionalization. Complanadines A (4) and B (5) were synthesized by adjusting the oxidation level of the bipyridine mono-N-oxide (67). The diverse utility of this common intermediate (67) suggests a possible biosynthetic pathway of complanadines in Nature. Both enantiomers of lycodine (1) and complanadines A (4) and B (5) were prepared in sufficient quantities for biological evaluation. The effect on neuron differentiation of PC-12 cells upon treatment with culture medium, in which human astrocytoma cells had been cultured in the presence of 1, 4, or 5 was evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201604647 | DOI Listing |
Inorg Chem
January 2025
Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
The reaction of the diborabenzene (DBB) nickel(0) pogo-stick complex [(η-DBB)Ni(CO)] () with a large excess of [Ni(CO)] yields the dark green, unstable dinickel(0) complex [(η-DBB)Ni(μ-CO)Ni(CO)] (), which loses one CO ligand to yield the purple, bimetallic Ni half-sandwich complex [(η-DBB)Ni(μ-CO)(η-CO)] (). The addition of the chromium aminoborylene complex [(OC)Cr{BN(TMS)}] (TMS = trimethylsilyl) to does not result in the expected borylene transfer but in the formation of the black Ni-Cr complex [(η-DBB)Ni(μ-CO)Cr(CO)] (), alongside the dimeric iminoborane [(TMS)BN(TMS)] (), which results from the rearrangement of the released BN(TMS) aminoborylene moiety. Furthermore, the oxidative addition of methyl triflate (MeOTf) to leaves the (η-DBB)Ni moiety intact and provides the ionic Ni half-sandwich complex [(η-DBB)NiMe(CO)]OTf (), while reaction with pentaphenylborole (PPB) yields the unique, dark-blue, unsymmetrical sandwich complex [(η-DBB)Ni(μ-CO)(η-PPB)] ().
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.
Investigating solid-state photoreactivity, driven by crystal packing, has been a major enduring research theme in Crystal Engineering. Trans-3-styryl pyridine (3-StPy), an unsymmetric olefin, is photo-stable. However, when converted to a series of salts, they exhibited solid-state photoreactivity under UV irradiation.
View Article and Find Full Text PDFChemistry
December 2024
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
We report the physical properties of a new class of triarylmethyl-based carbocations containing both an electron-donating diphenyl ether moiety and an electron-accepting carbonyl group with a helical plane framework. Their unique packing patterns were clarified by X-ray crystallographic analysis, which depend on the counter anions to influence their photophysical properties in the solid states. Notably, the interactions between π-cation species and planar anion species lead to a unique panchromatic property, accompanying a near-infrared absorption with a λ value of 1030 nm, which can be assigned to intermolecular charge transfer transition.
View Article and Find Full Text PDFSynthesis (Stuttg)
January 2024
Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, USA.
alkaloid complanadine A, isolated by Kobayashi et al. in 2000, is a complex and unsymmetrical dimer of lycodine. Biologically, it is a novel and promising lead compound for the development of new treatment for neurodegenerative disorders and persistent pain management.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India.
We envisioned a novel asymmetric strategy to access unsymmetrically substituted dimeric 2-oxindoles [(,)- and (,)-] for the total synthesis of calycanthidine (). The key to success is the development of efficient Pd(0)-catalyzed asymmetric sequential allylations [via a highly enantioselective [up to 94% enantiomeric excess (ee)] and diastereoselective (up to ∼13:1) process] of unsymmetrically protected dimeric 2-oxindoles at the 3,3' position [such as (,)- and (,)-]. Gratifyingly, a mixture of bis-ester (±)-, ester-carbonates (±)- and (±)-, and bis-carbonate could afford (,)- and (,)- in highly stereoselective fashion, thereby culminating in the total synthesis of (+)-calycanthidine [-()] and (-)-calycanthidine ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!