Background: Pilocytic astrocytoma (PA) is the most common pediatric brain glioma and is considered the prototype of benign circumscribed astrocytoma. Despite its low malignancy, the CT and MRI features of brain PA may resemble those of much more aggressive brain tumors. Misdiagnosis of PA is particularly easy when it demonstrates MR morphological and non-morphological findings that are inconsistent with its non-aggressive nature and that overlap with the features of more aggressive brain tumors.

Method: Basing on the evidence that the variation in the histological, genetic, and metabolic "fingerprint" for brain PA is dependent on tumor location, and the hypothesis that tumor location is related to the broad spectrum of morphological and non-morphological MR imaging findings, the authors discuss the MR imaging appearance of brain PA using a location-based approach to underline the typical and less typical imaging features and the main differential diagnosis of brain PA. A brief summary of the main pathological and clinical features, the natural history, and the treatment of brain PA is also provided.

Result: A combination of morphological and non-morphological MR imaging features and a site-based approach to differential diagnosis are required for a pre-operative diagnosis. The new "cutting-edge" MR imaging sequences have the potential to impact the ease and confidence of pediatric brain tumor interpretation and offer a more efficient diagnostic work-up.

Conclusions: Although the typical imaging features of brain pilocytic astrocytoma make radiological diagnosis relatively easy, an atypical and more aggressive appearance can lead to misdiagnosis. Knowing the broad spectrum of imaging characteristics on conventional and advanced MR imaging is important for accurate pre-operative radiological diagnosis and correctly interpreting changes during follow-up.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00381-016-3262-4DOI Listing

Publication Analysis

Top Keywords

pilocytic astrocytoma
12
morphological non-morphological
12
imaging features
12
brain
10
imaging
9
brain pilocytic
8
pediatric brain
8
features brain
8
aggressive brain
8
tumor location
8

Similar Publications

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!