Actin is one of the most abundant cellular proteins and an essential constituent of the actin cytoskeleton, which by its dynamic behavior participates in many cellular activities. The organization of the actin cytoskeleton is regulated by a large number of proteins and represents one of the major targets of bacterial toxins. A number of bacterial effector proteins directly modify actin: Clostridial bacteria produce toxins, which ADP-ribosylate actin at Arg177 leading to inhibition of actin polymerization. The bacterium Photorhabdus luminescens produces several types of protein toxins, including the high molecular weight Tc toxin complex, whose component TccC3 ADP-ribosylates actin at Thr148 promoting polymerization and aggregation of intracellular F-actin leading to inhibition of several cellular functions, such as phagocytosis. Here, we review recent findings about the functional consequences of these actin modifications and for the Thr148-ADP-ribosylated actin the subsequent alterations in the interaction with actin-binding proteins . In addition, we describe the effects of ADP-ribosylation of Rho GTPases by the TccC5 component.

Download full-text PDF

Source
http://dx.doi.org/10.1007/82_2016_43DOI Listing

Publication Analysis

Top Keywords

actin
10
photorhabdus luminescens
8
actin-binding proteins
8
proteins essential
8
actin cytoskeleton
8
leading inhibition
8
proteins
5
toxins
4
luminescens toxins
4
toxins tccc3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!