Glucose transport in the rat erythrocyte is subject to feedback regulation by sugar metabolism at high but not at low temperatures [Abumrad et al. (1988) Biochim. Biophys. Acta 938, 222-230]. This indicates that temperature, which is known to alter membrane fluidity, also alters sensitivity of transport to regulation. In the present work, we have investigated a possible correlation between the effects of temperature on rate-limiting steps of glucose transport and on membrane fluidity. The dependences of methylglucose efflux and influx on cis and trans methylglucose concentrations were studied at temperatures between 17 and 37 degrees C. Membrane fluidity was monitored over the same temperature range by using electron paramagnetic resonance spectroscopy. External sugar did not affect efflux, and the Km and Vmax of sugar exit were respectively the same as the Km and Vmax of equilibrium exchange. These Km's were relatively temperature independent, but the Vmax's increased sharply with temperature. The Km and Vmax of methylglucose entry were respectively much lower than the Km and Vmax of exit and exchange. Consistent with the above, intracellular sugar greatly enhanced sugar influx, and did so by increasing the influx Vmax without affecting the influx Km. Both lines of evidence indicated that the conformational change of the empty sugar-binding site from in-facing to out-facing orientation is the rate-limiting step of sugar entry into the rat erythrocyte. This was the case at all temperatures; however, the discrepancies of coefficients declined significantly with increasing temperature.2+ The temperature dependence of the slowest step (change from in- to out-facing empty carrier) was evaluated.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00439a042 | DOI Listing |
Redox Biol
January 2025
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China. Electronic address:
Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs).
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, China.
Sci Total Environ
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:
J Hazard Mater
January 2025
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!