The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene-polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 3 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT's porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055116 | PMC |
http://dx.doi.org/10.2147/DDDT.S114724 | DOI Listing |
Neurogastroenterol Motil
December 2024
Trisco Foods, Carole Park, Queensland, Australia.
Food Chem
December 2024
School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. Electronic address:
The impact of various biopolymers on low-sodium condiments composed of salt, potassium chloride, sodium glutamate and Maillard reaction products with chicken flavor were evaluated in order to generate uniformly distributed low-sodium condiments. The addition of biopolymers reduced the sodium and potassium content of low sodium condiments, as well as improved the particle size, changed the particle morphology. The addition of different biopolymers had different effects on the color, flow characteristics, solubility, hygroscopicity and thermal stability of low sodium condiments.
View Article and Find Full Text PDFOptom Vis Sci
December 2024
Department of Biostatistics, LV Prasad Eye Institute, Hyderabad, Telangana, India.
Significance: Artificial tears remain the cornerstone for managing dry eye disease. The current study's real-world efficacy test of carboxymethylcellulose (CMC), polyethylene glycol (PEG) 400, or sodium hyaluronate (SH)-based lubricants highlights their similar effects on noninvasive tear film parameters over the short term. However, patients reported better relief with SH-based lubricants.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.
Herein, a kind of N-doped fluorescent carbon dots (N-CDs) were prepared by using melamine and carboxymethyl cellulose (CMC) as precursors through a straightforward hydrothermal method. The designed sensor displayed a uniform nanoscale distribution, excellent hydrophilicity, and strong fluorescence emission with a fluorescence quantum yield of 37.98%.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
Postsurgical adhesions are a common complication associated with surgical procedures; they not only impact the patient's well-being but also impose a financial burden due to medical expenses required for reoperative surgeries or adhesiolysis. Adhesions can range from a filmy, fibrinous, or fibrous vascular band to a cohesive attachment, and they can form in diverse anatomical locations such as the peritoneum, pericardium, endometrium, tendons, synovium, and epidural and pleural spaces. Numerous strategies have been explored to minimize the occurrence of postsurgical adhesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!