Patients with advanced congestive heart failure (CHF) or chronic kidney disease often have increased angiotensin II (Ang II) levels and cachexia. We previously demonstrated that Ang II, via its type 1 receptor, causes muscle protein breakdown and apoptosis and inhibits satellite cell (SC) proliferation and muscle regeneration, likely contributing to cachexia in CHF and chronic kidney disease. In contrast, Ang II, via its type 2 receptor (AT2R) expression, is robustly induced during SC differentiation, and it potentiates muscle regeneration. To understand the mechanisms regulating AT2R expression and its potential role in muscle regeneration in chronic diseases, we used a mouse model of CHF and found that muscle regeneration was markedly reduced and that this was accompanied by blunted increase of AT2R expression. We performed AT2R promoter reporter analysis during satellite cell differentiation and found that the 70 bp upstream of the AT2R transcription start site contain a core promoter region, and regions upstream of 70 bp to 3 kbp are dispensable for AT2R induction. Instead, AT2R intron 2 acts as a transcriptional enhancer during SC differentiation. Further deletion/mutation analysis revealed that multiple transcription factor binding sites in the +286/+690 region within intron 2 coordinately regulate AT2R transcription. Importantly, +286/+690 enhancer activity was suppressed in CHF mouse skeletal muscle, suggesting that AT2R expression is suppressed in CHF via inhibition of AT2R intronic enhancer activity, leading to lowered muscle regeneration. Thus targeting intron 2 enhancer element could lead to the development of a novel intervention to increase AT2R expression in SCs and potentiate skeletal muscle regenerative capacity in chronic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207256PMC
http://dx.doi.org/10.1074/jbc.M116.752501DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
20
at2r expression
20
type receptor
12
satellite cell
12
at2r
11
intronic enhancer
8
enhancer element
8
cell differentiation
8
activity suppressed
8
congestive heart
8

Similar Publications

regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.

View Article and Find Full Text PDF

Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.

View Article and Find Full Text PDF

An Acellular Platform to Drive Urinary Bladder Tissue Regeneration.

Adv Ther (Weinh)

January 2025

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.

Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.

View Article and Find Full Text PDF

The Association Between Levator Ani Integrity and Postpartum Ano-Rectal Dysfunction: A Systematic Review.

Int Urogynecol J

January 2025

Department Development and Regeneration, Cluster Urogenital, Abdominal and Plastic Surgery, KU Leuven, Leuven, Belgium.

Introduction And Hypothesis: Pregnancy and delivery are commonly associated with ano-rectal dysfunction. In addition, vaginal delivery may impact both the structure and functionality of the pelvic floor. Herein, we systematically reviewed the literature for the potential association between levator ani muscle (LAM) avulsion and ano-rectal function after childbirth.

View Article and Find Full Text PDF

Competitive signaling and cellular communications in myocardial infarction response.

Mol Biol Rep

January 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.

Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!