Propofol can induce acute neuronal apoptosis, neuronal loss or long-term cognitive impairment when exposed in neonatal rodents, but the mechanisms by which propofol induces developmental neurotoxicity are unclear. Recent studies have demonstrated that propofol can increase the TNF-α level in the developing brain, but there is a lack of direct evidence to show whether TNF-α is partially or fully involved in propofol-induced neurotoxicity. The present study shows that propofol exposure in neonatal rats induces an increase of TNF-α in the cerebral spinal fluid, hippocampus and prefrontal cortex (PFC). Etanercept, a TNF-α inhibitor, prevents propofol-induced short- or long-term neuronal apoptosis, neuronal loss, synaptic loss and long-term cognitive impairment. Furthermore, mTNF-α (precursor of TNF-α) expression in microglia cells is increased after propofol anaesthesia in either the hippocampus or PFC, but mTNF-α expression in neurons is only increased in the PFC. These findings suggest that TNF-α may mediate propofol-induced developmental neurotoxicity, and etanercept can provide neural protection. Microglia are the main cellular source of TNF-α after propofol exposure, while the synthesis of TNF-α in neurons is brain-region selective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2016.10.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!