Objectives: Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements.
Methods: The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples.
Results: A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %.
Conclusion: We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070150 | PMC |
http://dx.doi.org/10.1186/s12881-016-0334-y | DOI Listing |
Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.
View Article and Find Full Text PDFJ Pediatr Surg
December 2024
Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
Background: We sought to determine whether transamniotic stem cell therapy (TRASCET) could be a viable alternative for the fetal administration of genetically modified hematopoietic stem cells (HSCs) carrying a human hemoglobin subunit beta gene (hHBB) in a healthy syngeneic rat model.
Methods: Time-dated pregnant Lewis dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 61) of a suspension of donor HSCs genetically modified with either both a hHBB gene and a firefly luciferase reporter gene (n = 42) or the firefly luciferase reporter gene alone to control for HBB-derived protein interspecies homology (n = 19) on gestational day 17 (E17; term = E21). Donor HSCs consisted of syngeneic cells phenotyped by flow cytometry with successful hHBB transduction confirmed by ELISA prior to administration in vivo.
Ann Hematol
December 2024
Rare Disease Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
Introduction: β-thalassemia is a common genetic disease mainly caused by point mutations in the β-globin gene, eliciting a high prevalence in South China. The aim of the present study is to identify a rare HBB: c.316-90 A > G variant and provide the clinical and hematological features in two unrelated Chinese families.
View Article and Find Full Text PDFAdv Lab Med
December 2024
Department of Laboratory Service, Área de Gestión Sanitaria Norte de Huelva, Hospital de Riotinto, Minas de Riotinto, Huelva, Spain.
Objectives: To describe a variant hemoglobin that interferes with HbA analysis by cation exchange HPLC.
Case Presentation: A 78 years-old Spanish male patient visited the Internal Medicine Clinic for a routine check-up, with HbA included to screen for diabetes. He had suffered hypertension and dyslipidemia, and the patient had no previous symptoms suggestive of diabetes such as hyperglycemia, weight loss, polydipsia, polyuria or tiredness.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!