Background: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products. This trait typically has very low individual-tree heritability, but can be more accurately assessed in clonally-replicated plantings where each genotype is represented by several individual trees. We report results from a quantitative trait mapping experiment in a clonally-replicated full-sibling family of loblolly pine (Pinus taeda L.).

Results: Quantitative trait loci influencing forking defects were identified in an outbred full-sibling family of loblolly pine, using single-nucleotide polymorphism markers. Genetic markers in this family segregated either in 1:2:1 (F2 intercross-like segregation) or 1:1 ratio (backcross-like segregation). An integrated linkage map combining markers with different segregation ratios was assembled for this full-sib family, and a total of 409 SNP markers were mapped on 12 linkage groups, covering 1622 cM. Two and three trait loci were identified for forking and ramicorn branch traits, respectively, using the interval mapping method. Three trait loci were detected for both traits using multiple-trait analysis.

Conclusions: The detection of three loci for forking and ramicorn branching in a multiple-trait analysis could mean that there are genes with pleiotropic effects on both traits, or that separate genes affecting different traits are clustered together. The detection of genetic loci associated with variation in stem quality traits in this study supports the hypothesis that marker-assisted selection can be used to decrease the rate of stem defects in breeding populations of loblolly pine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069978PMC
http://dx.doi.org/10.1186/s12863-016-0446-6DOI Listing

Publication Analysis

Top Keywords

trait loci
16
loblolly pine
16
quantitative trait
12
loci influencing
8
influencing forking
8
forking defects
8
wood industrial
8
full-sibling family
8
family loblolly
8
three trait
8

Similar Publications

Background: Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats.

View Article and Find Full Text PDF

Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain.

Nat Genet

January 2025

Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.

View Article and Find Full Text PDF

Digestive and psychiatric disorders tend to co-occur, yet mechanisms remain unclear. Leveraging genetic and transcriptomic data integration, we conduct multi-trait analysis of GWAS (MTAG) and weighted gene co-expression network analysis (WGCNA) to explore shared mechanism between psychiatric and gastrointestinal disorders. Significant genetic correlations were found between these disorders, especially in irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), depression (DEP), and neuroticism (NE).

View Article and Find Full Text PDF

Introduction: Bipolar 2 disorder (BD2) is an independent disease with specific familial aggregation, significant functional impairment, specific treatment challenges and several distinctive clinical features. However, unlike bipolar 1 disorder, studies investigating causal and functional genes are lacking. This study aims to identify and prioritize causal genetic variants and genes for BD2 by analyzing brain-specific gene expression markers, to improve the understanding of its genetic underpinnings and support advancements in diagnosis, treatment and prognosis.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!