Between September and November 1991, 54 adult skinks from 15 species were collected by hand or blowpipe from several localities on Rarotonga, Cook Islands, Ovalau Island, Fiji, and Papua New Guinea (PNG), and their feces were examined for coccidians. Species included 5 seaside skinks (Emoia atrocostata), 1 Pacific blue-tailed skink (Emoia caeroleocauda), 2 Fiji slender treeskinks (Emoia concolor), 15 white-bellied copper-striped skinks (Emoia cyanura), 1 Bulolo River forest skink (Emoia guttata), 6 dark-bellied copper-striped skinks (Emoia impar), 5 Papua five-striped skinks (Emoia jakati), 2 Papua slender treeskinks (Emoia kordoana), 3 Papua robust treeskinks (Emoia longicauda), 1 brown-backed forest skink (Emoia loveridgei), 3 Papua black-sided skinks (Emoia pallidiceps), 2 Papua white-spotted skinks (Emoia physicae), 2 Papua yellow-head skinks (Emoia popei), 1 Papua brown forest skink (Emoia submetallica), and 5 Fiji barred treeskinks (Emoia trossula) Species of Eimeria (Ei.) were detected from these Emoia (Em.) spp. and are described here as new. Oocysts of Eimeria iovai n. sp. from Em. pallidiceps from PNG were ellipsoidal with a bilayered wall (L × W) 26.5 × 18.1 μm, with a length/width ratio (L/W) of 1.1. Both micropyle and oocyst residuum were absent, but a fragmented polar granule was present. This eimerian also was found in Em. atrocostata from PNG. Oocysts of Eimeria kirkpatricki n. sp. from Em. atrocostata from PNG were ellipsoidal with a bilayered wall, 18.6 × 13.5 μm, L/W 1.4. A micropyle and oocyst residuum were absent, but a fragmented polar granule was present. This eimerian was also shared by Em. cyanura from the Cook Islands and Fiji, Em. impar from the Cook Islands, Em. loveridgei from PNG, Em. pallidiceps from PNG, Em. popei from PNG, and Em. submetallica from PNG. Oocysts of Eimeria stevejayuptoni n. sp. from Em. longicauda were subspheroidal to ellipsoidal with a bilayered wall, 18.7 × 16.6 μm, L/W 1.1. A micropyle and oocyst residuum were absent, but a fragmented polar granule was present. Oocysts of Eimeria emoia n. sp. from Em. longicauda from PNG were cylindroidal with a bilayered wall, 29.2 × 15.7 μm, L/W 1.9. A micropyle and oocyst residuum were absent, but a polar granule was present. These are the first eimerians reported from Emoia spp. and they add to our growing knowledge of the coccidian fauna of scincid lizards of the South Pacific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/16-67 | DOI Listing |
Acta Parasitol
September 2024
Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, 4165 Spruance Road, Suite 200, San Diego, CA, 92101-0812, USA.
Purpose: Nothing is known about coccidians (Apicomplexa: Eimeriidae) from the Pacific blue-tailed skink, Emoia caeruleocauda. Here, we report mensural and morphometric data on a new species of Isospora from E. caeruleocauda from Guam, US Territory.
View Article and Find Full Text PDFCurr Zool
February 2020
Department of Ecology & Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095-1606, USA.
Animals living around people may modify their antipredator behavior as a function of proximity to humans, and this response has profound implications for whether or not a population can coexist with humans. We asked whether inland blue-tailed skinks modified their individual antipredator behavior as a function of differential exposure to humans. We conducted multiple consecutive flushes and recorded 2 measures of antipredator response: flight initiation distance (FID), the distance from a threatening stimulus at which an individual flees, and distance fled, the distance an individual fled after a flush.
View Article and Find Full Text PDFJ Parasitol
February 2017
Science and Mathematics Division, Eastern Oklahoma State College, Idabel, Oklahoma 74745.
Between September and November 1991, 54 adult skinks from 15 species were collected by hand or blowpipe from several localities on Rarotonga, Cook Islands, Ovalau Island, Fiji, and Papua New Guinea (PNG), and their feces were examined for coccidians. Species included 5 seaside skinks (Emoia atrocostata), 1 Pacific blue-tailed skink (Emoia caeroleocauda), 2 Fiji slender treeskinks (Emoia concolor), 15 white-bellied copper-striped skinks (Emoia cyanura), 1 Bulolo River forest skink (Emoia guttata), 6 dark-bellied copper-striped skinks (Emoia impar), 5 Papua five-striped skinks (Emoia jakati), 2 Papua slender treeskinks (Emoia kordoana), 3 Papua robust treeskinks (Emoia longicauda), 1 brown-backed forest skink (Emoia loveridgei), 3 Papua black-sided skinks (Emoia pallidiceps), 2 Papua white-spotted skinks (Emoia physicae), 2 Papua yellow-head skinks (Emoia popei), 1 Papua brown forest skink (Emoia submetallica), and 5 Fiji barred treeskinks (Emoia trossula) Species of Eimeria (Ei.) were detected from these Emoia (Em.
View Article and Find Full Text PDFConserv Biol
February 2017
Threatened Species Recovery Hub of the National Environment Science Programme, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia.
Extinctions typically have ecological drivers, such as habitat loss. However, extinction events are also influenced by policy and management settings that may be antithetical to biodiversity conservation, inadequate to prevent extinction, insufficiently resourced, or poorly implemented. Three endemic Australian vertebrate species-the Christmas Island pipistrelle (Pipistrellus murrayi), Bramble Cay melomys (Melomys rubicola), and Christmas Island forest skink (Emoia nativitatis)-became extinct from 2009 to 2014.
View Article and Find Full Text PDFPhysiol Biochem Zool
November 2014
Department of Biology and Burke Museum of Natural History and Culture, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, Washington 98195.
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!