The Catalyst-Controlled Regiodivergent Chlorination of Phenols.

Org Lett

Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States.

Published: November 2016

Different catalysts are demonstrated to overcome or augment a substrate's innate regioselectivity. Nagasawa's bis-thiourea catalyst was found to overcome the innate para-selectivity of electrophilic phenol chlorination, yielding ortho-chlorinated phenols that are not readily obtainable via canonical electrophilic chlorinations. Conversely, a phosphine sulfide derived from 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) was found to enhance the innate para-preference of phenol chlorination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.6b02650DOI Listing

Publication Analysis

Top Keywords

phenol chlorination
8
catalyst-controlled regiodivergent
4
regiodivergent chlorination
4
chlorination phenols
4
phenols catalysts
4
catalysts demonstrated
4
demonstrated overcome
4
overcome augment
4
augment substrate's
4
substrate's innate
4

Similar Publications

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.

View Article and Find Full Text PDF

Optimization of Mushroom ( and ) By-Products Processing for Prospective Functional Flour Development.

Foods

December 2024

IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain.

Stems are a major by-product of mushroom production. This study optimizes the transformation of stems (ABS) and stems (POS) into flour. ABS are attached to the peat, so, the process was divided into two steps.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Objective: The aim of this systematic review is to explore the effectiveness of different methods of reducing contamination and biofilms in dental unit waterlines (DUWLs) and to provide reference for future standardisation of disinfection practices in dental clinic.

Methods: This systematic review searched PubMed and Web of Science databases for DUWL disinfection studies from 2013 to 2023, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Synthesis Without Meta-analysis, additional extracting relevant data based on predefined inclusion and exclusion criteria.

Results: The study review identified 8442 articles, with 58 included after rigorous screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!