Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand-receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL-protein interactions and their effects on cell signalling and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085762PMC
http://dx.doi.org/10.3390/ijms17101732DOI Listing

Publication Analysis

Top Keywords

signal transduction
8
specific gsls
8
signalling development
8
gsls
7
signalling
5
glycosphingolipid-protein interaction
4
interaction signal
4
transduction glycosphingolipids
4
glycosphingolipids gsls
4
gsls class
4

Similar Publications

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.

View Article and Find Full Text PDF

Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.

View Article and Find Full Text PDF

Decoding the role of ghrelin and its interactions with central signaling pathways in avian appetite regulation.

Vet Res Commun

January 2025

Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!