Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting.

Vaccines (Basel)

Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon 69007, France.

Published: October 2016

Vaccines have successfully eradicated a large number of diseases. However, some infectious diseases (such as HIV, or ) keep spreading since there is no vaccine to prevent them. One way to overcome this issue is the development of new adjuvant formulations which are able to induce the appropriate immune response without sacrificing safety. Lymph nodes are the site of lymphocyte priming by antigen-presenting cells and subsequent adaptive immune response, and are a promising target for vaccine formulations. In this review, we describe the properties of different polymer-based (e.g., poly lactic-co-glycolic acid, poly lactic acid …) particulate adjuvants as innovative systems, capable of co-delivering immunopotentiators and antigens. We point out how these nanoparticles enhance the delivery of antigens, and how their physicochemical properties modify their uptake by antigen-presenting cells and their migration into lymph nodes. We describe why polymeric nanoparticles increase the persistence into lymph nodes and promote a mature immune response. We also emphasize how nanodelivery directs the response to a specific antigen and allows the induction of a cytotoxic immune response, essential for the fight against intracellular pathogens or cancer. Finally, we highlight the interest of the association between polymer-based vaccines and immunopotentiators, which can potentiate the effect of the molecule by directing it to the appropriate compartment and reducing its toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192354PMC
http://dx.doi.org/10.3390/vaccines4040034DOI Listing

Publication Analysis

Top Keywords

lymph nodes
16
immune response
16
antigen-presenting cells
8
response
5
biodegradable polymeric
4
polymeric nanoparticles-based
4
nanoparticles-based vaccine
4
vaccine adjuvants
4
lymph
4
adjuvants lymph
4

Similar Publications

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Objectives: To determine the efficacy of quantitative shear wave elastography in differentiating benign and malignant axillary lymph nodes (ALN).

Methods: Exactly 127 lymph nodes from 127 patients with clinically palpable axillary swelling were examined by both B-mode sonography and elastography from November 2022 to March 2024. Gray-scale sonograms were evaluated based on: the short-axis diameter, shape, hilum, maximum cortical thickness, and border of the ALN.

View Article and Find Full Text PDF

Pheochromocytoma (PHEO) currently is considered to be malignant due to metastatic potential. One of the most common familial forms of PHEO is multiple endocrine neoplasia syndrome (MEN) type 2. The penetrance of PHEO in MEN2 syndrome is up to 50% of cases.

View Article and Find Full Text PDF

Background: Penile metastasis originating from prostate cancer is an extremely rare condition, typically associated with a poor prognosis. Therapeutic approaches are not well established and may require individualized adaptation based on clinical assessment. Radiotherapy is commonly utilized to alleviate symptoms.

View Article and Find Full Text PDF

Background: Skip lymph node metastasis (SLNM) in papillary thyroid cancer (PTC) involves cancer cells bypassing central nodes to directly metastasize to lateral nodes, often undetected by standard preoperative ultrasonography. Although multiple models exist to identify SLNM, they are inadequate for clinically node-negative (cN0) patients, resulting in underestimated metastatic risks and compromised treatment effectiveness. Our study aims to develop and validate a machine learning (ML) model that combines elastography radiomics with clinicopathological data to predict pre-surgical SLNM risk in cN0 PTC patients with increased risk of lymph node metastasis (LNM), improving their treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!