A graphene quantum dot (GQD) used as the photosensitizer with high two-photon absorption in the near-infrared region, a large absolute cross section of two-photon excitation (TPE), strong two-photon luminescence, and impressive two-photon stability could be used for dual modality two-photon photodynamic therapy (PDT) and two-photon bioimaging with an ultrashot pulse laser (or defined as TPE). In this study, a GQD efficiently generated reactive oxygen species coupled with TPE, which highly increased the effective PDT ability of both Gram-positive and -negative bacteria, with ultralow energy and an extremely short photoexcitation time generated by TPE. Because of its two-photon properties, a GQD could serve as a promising two-photon contrast agent for observing specimens in depth in three-dimensional biological environments while simultaneously proceeding with PDT action to eliminate bacteria, particularly in multidrug-resistant (MDR) strains. This procedure would provide an efficient alternative approach to easily cope with MDR bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b12014DOI Listing

Publication Analysis

Top Keywords

two-photon
9
photodynamic therapy
8
contrast agent
8
graphene quantum
8
two-photon photoexcited
4
photoexcited photodynamic
4
therapy contrast
4
agent antimicrobial
4
antimicrobial graphene
4
quantum dots
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!