The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis.

Tumour Biol

Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, People's Republic of China.

Published: October 2016

MicroRNAs are a large group of non-coding RNAs that have emerged as regulators of various biological processes, especially carcinogenesis and cancer progression. Recent evidence has shown that microRNA-196a (miR-196a) is upregulated in most types of tumors and involved in multiple biological processes via translational inhibition and mRNA cleavage, such as cell proliferation, migration, and invasion, mostly functioning as an oncogene. Dysregulation of miR-196a promotes oncogenesis and tumor progression. In this review, we summarize the upstream regulators, target genes, signaling pathways, and single nucleotide polymorphisms of miR-196a, which collectively affect cell proliferation, migration, and invasion. In addition, we review the clinical outcomes and significance of miR-196a. miR-196a may serve as a novel biomarker or target for diagnosis, prognosis, and therapy in several human cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-5430-2DOI Listing

Publication Analysis

Top Keywords

tumor progression
8
biological processes
8
cell proliferation
8
proliferation migration
8
migration invasion
8
mir-196a
5
role microrna-196a
4
microrna-196a tumorigenesis
4
tumorigenesis tumor
4
progression prognosis
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Purpose: The aim of this study was to identify prognostic factors influencing overall survival (OS) in patients with gastric cancer treated with adjuvant chemoradiotherapy (CRT) and to develop a predictive model.

Methods: We retrospectively evaluated 245 non-metastatic gastric cancer patients who received adjuvant CRT or radiotherapy from 2010 to 2020. Survival analyses were performed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!