The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined tumor growth rate. Following tissue sampling during surgery, mRNA was extracted from 16 sporadic VS. Double stranded cDNA was synthesized from the mRNA and used as template for in vitro transcription reaction to synthesize biotin-labeled antisense cRNA, which was hybridized to Affymetrix HG-U133A arrays and analyzed by dChip software. Differential gene expression was defined as a 1.5-fold difference between fast and slow growing tumors (><0.5 ccm/year), employing a p-value <0.01. Deregulated transcripts were matched against established gene ontology. Ingenuity Pathway Analysis was used for identification of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell differentiation and proliferation, among other functions. Fourteen pathways were associated with tumor growth. Five functional molecular networks were generated. This first study on global gene expression in relation to vestibular schwannoma growth rate identified several genes, signal transduction pathways and functional networks associated with tumor progression. Specific genes involved in apoptosis, cell growth and proliferation were deregulated in fast growing tumors. Fourteen pathways were associated with tumor growth. Generated functional networks underlined the importance of the PI3K family, among others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-016-2292-9 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).
Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.
Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.
J Tissue Eng
January 2025
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.
View Article and Find Full Text PDFHeliyon
January 2025
CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
Feeding disruption is closely linked to numerous diseases, yet the underlying molecular mechanisms remain an important but unresolved issue at the molecular level. We hypothesize that, at the network level, dietary disruptions can alter gene co-expression patterns, leading to an increase in disease-associated modules, and thereby elevating the likelihood of disease occurrence. Here, we investigate this hypothesis using transcriptomic data from a large cohort of adult mice subjected to feeding disruptions.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
Background And Objective: MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!