The leading nonlinear stress response in a periodically strained concentrated colloidal dispersion is studied experimentally and by theory. A thermosensitive microgel dispersion serves as well-characterized glass-forming model, where the stress response at the first higher harmonic frequency (3ω for strain at frequency ω) is investigated in the limit of small amplitude. The intrinsic nonlinearity at the third harmonic exhibits a scaling behavior which has a maximum in an intermediate frequency window and diverges when approaching the glass transition. It captures the (in-) stability of the transient elastic structure. Elastic stresses in-phase with the third power of the strain dominate the scaling. Our results qualitatively differ from previously derived scaling behavior in dielectric spectroscopy of supercooled molecular liquids. This might indicate a dependence of the nonlinear response on the symmetry of the external driving under time reversal.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6sm01616bDOI Listing

Publication Analysis

Top Keywords

stress response
12
third harmonic
8
approaching glass
8
glass transition
8
scaling behavior
8
divergence third
4
harmonic stress
4
response
4
response oscillatory
4
oscillatory strain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!