Cell growth and differentiation are often driven by subtle changes in gene expression. Many challenges still exist in detecting these changes, particularly in the context of a complex, developing tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) allows relatively high-throughput evaluation of multiple genes and developmental time points. Proper quantification of gene expression levels by qRT-PCR requires normalization to one or more reference genes. Traditionally, these genes have been selected based on their presumed "housekeeping" function, with the implicit assumption that they are stably expressed over the entire experimental set. However, this is rarely tested empirically. Here we describe the identification of novel reference genes for the mouse mammary gland based on their stable expression in published microarray datasets. We compared eight novel candidate reference genes (Arpc3, Clock, Ctbp1, Phf7, Prdx1, Sugp2, Taf11 and Usp7) to eight traditional ones (18S, Actb, Gapdh, Hmbs, Hprt, Rpl13a, Sdha and Tbp) and analysed all genes for stable expression in the mouse mammary gland from pre-puberty to adulthood using four different algorithms (GeNorm, DeltaCt, BestKeeper and NormFinder). Prdx1, Phf7 and Ctbp1 were validated as novel and reliable, tissue-specific reference genes that outperform traditional reference genes in qRT-PCR studies of postnatal mammary gland development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067587 | PMC |
http://dx.doi.org/10.1038/srep35595 | DOI Listing |
Elucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases.
View Article and Find Full Text PDFBackground: Clonal hematopoiesis of indeterminate potential (CHIP) is the age-related presence of expanded somatic clones secondary to leukemogenic driver mutations and is associated with cardiovascular (CV) disease and mortality. We sought to evaluate relationships between CHIP with cardiometabolic diseases and incident outcomes in high-risk individuals.
Methods: CHIP genotyping was performed in 8469 individuals referred for cardiac catheterization at Duke University (CATHGEN study) to identify variants present at a variant allele fraction (VAF) ≥2%.
Heliyon
January 2025
Paediatric Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
Background: Cystic fibrosis is a heterogeneous disease whose severity and symptoms largely depend on the functional impact of mutations in the cystic fibrosis transmembrane conductance regulator gene. Other genes may also modulate the clinical manifestations and complications associated with cystic fibrosis. Genetic variants of the bitter taste receptor TAS2R38 have been shown to contribute to the susceptibility and severity of chronic rhinosinusitis.
View Article and Find Full Text PDFBrain
January 2025
Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, W1W 7FF, UK.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!