Low plasma concentrations of L-homoarginine are associated with an increased risk of cardiovascular events, while homoarginine supplementation is protective in animal models of metabolic syndrome and stroke. Catabolism of homoarginine is still poorly understood. Based on the recent findings from a Genome Wide Association Study we hypothesized that homoarginine can be metabolized by alanine:glyoxylate aminotransferase 2 (AGXT2). We purified human AGXT2 from tissues of AGXT2 transgenic mice and demonstrated its ability to metabolize homoarginine to 6-guanidino-2-oxocaproic acid (GOCA). After incubation of HepG2 cells overexpressing AGXT2 with isotope-labeled homoarginine-d4 we were able to detect labeled GOCA in the medium. We injected wild type mice with labeled homoarginine and detected labeled GOCA in the plasma. We found that AGXT2 knockout (KO) mice have higher homoarginine and lower GOCA plasma levels as compared to wild type mice, while the reverse was true for AGXT2 transgenic (Tg) mice. In summary, we experimentally proved the presence of a new pathway of homoarginine catabolism - its transamination by AGXT2 with formation of GOCA and demonstrated that endogenous AGXT2 is required for maintenance of homoarginine levels in mice. Our findings may lead to development of novel therapeutic approaches for cardiovascular pathologies associated with homoarginine deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082758 | PMC |
http://dx.doi.org/10.1038/srep35277 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.
View Article and Find Full Text PDFSci Rep
January 2025
Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036, Graz, Austria.
Early depressive symptoms within the first days after acute myocardial infarction (AMI) are mainly manifested with performance parameters (lack of energy, concentration difficulties, reduction in physical functioning). Homoarginine (hArg), a non-proteinogenic amino acid, might increase the availability of nitric oxide (NO). NO controls vasodilatation, blood flow, mitochondrial respiration and improves performance.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2024
Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
L-arginine and its (patho-)physiologically active derivatives, L-homoarginine and asymmetric dimethylarginine (ADMA), show significant differences in their renal clearance. The underlying molecular mechanisms remain to be elucidated, but selective tubular transport protein-mediated mechanisms likely play a role. In the present study, we investigate the human heteromeric transporter bAT-rBAT (encoded by the SLC7A9 and SLC3A1 genes) as a potential candidate because it is localized in the luminal membrane of human proximal tubule cells and capable of mediating the cellular uptake of amino acids, including L-arginine.
View Article and Find Full Text PDFJ Transl Med
November 2024
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Background: Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood.
Methods: To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC).
J Dairy Sci
January 2025
Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands. Electronic address:
Skeletal muscle is vital in maintaining metabolic homeostasis and adapting to the physiological needs of pregnancy and lactation. Despite advancements in understanding metabolic changes in dairy cows around calving and early lactation, there are still gaps in our knowledge, especially concerning muscle metabolism and the changes associated with drying off. This study aimed to characterize the skeletal muscle metabolome in the context of the dietary and metabolic changes occurring during the transition from the cessation of lactation to the resumption of lactation in dairy cows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!