A new in vitro model based on the electrical resistance properties of the skin barrier has been established in this laboratory. The model utilises a tape stripping procedure in dermatomed pig skin that removes a specific proportion of the stratum corneum, mimicking impaired barrier function observed in humans with damaged skin. The skin penetration and distribution of chemicals with differing physicochemical properties, namely; Benzoic acid, 3-Aminophenol, Caffeine and Sucrose has been assessed in this model. Although, skin penetration over 24h differed for each chemical, compromising the skin did not alter the shape of the time course profile, although absorption into receptor fluid was higher for each chemical. Systemic exposure (receptor fluid, epidermis and dermis), was marginally higher in compromised skin following exposure to the fast penetrant, Benzoic acid, and the slow penetrant Sucrose. The systemically available dose of 3-Aminophenol increased to a greater extent and the absorption of Caffeine was more than double in compromised skin, suggesting that Molecular Weight and Log P, are not the only determinants for assessing systemic exposure under these conditions. Although further investigations are required, this in vitro model may be useful for prediction of dermal route exposure under conditions where skin barrier is impaired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2016.10.004 | DOI Listing |
Biomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFNeoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFBiomacromolecules
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.
View Article and Find Full Text PDFStem Cells Transl Med
December 2024
NEI/OSCTRS/OGVFB, Bethesda, MD, United States.
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!