Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
27-hydroxycholesterol (27-HC), the most abundant metabolite of cholesterol, is a risk factor for breast cancer. It can increase the proliferation of breast cancer cells and promote the metastasis of breast tumours in mouse models. Myc is a critical oncoprotein overexpressed in breast cancer. However, whether 27-HC affects Myc expression has not been reported. In the current study, we aimed to investigate the effects of 27-HC on Myc and the underlying mechanisms in MCF-7 breast cancer cells. Our data demonstrated that 27-HC activated Myc via increasing its protein stability. Three key negative modulators of Myc protein stability, PP2A, SCP1 and FBW7, were suppressed by 27-HC at the transcriptional level. We performed a data-mining analysis of the chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) data in the ChIPBase, and discovered that a number of putative transcription factors (TFs), including Myc itself, were involved in the transcriptional regulation of PP2A, SCP1 and FBW7. Our results provide a novel mechanistic insight into the activation of Myc by 27-HC via transcriptional repression of PP2A, SCP1 and FBW7 to increase Myc protein stability in breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2016.10.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!