CHEK2 mutations are associated with increased cancer risks, including breast; however, published risk estimates are limited to those conferred by CHEK2 founder mutations, presenting uncertainty in risk assessment for carriers of other CHEK2 mutations. This study aimed to assess phenotypes and molecular characteristics of CHEK2 mutation carriers (CHEK2 + s) from a multi-gene panel testing (MGPT) cohort, focusing on comparing phenotypes of founder and non-founder CHEK2 + s. Clinical histories and molecular results were reviewed from 45,879 patients who underwent MGPT including CHEK2 at a commercial laboratory. Of individuals tested, 2.4% (n = 1085) were CHEK2 + s. Sixteen individuals harbored biallelic CHEK2 mutations, bringing the total number of CHEK2 mutations detected in this cohort to 1101. Personal/family cancer histories were compared between founder (n = 576; included c.1100delC, p.S428F, c.444 + 1G > A, and EX8_9del) and non-founder (n = 259) CHEK2 + s using Fisher's exact test and multivariate logistic regression analysis. Individuals carrying the p.I157T moderate risk founder mutation (n = 231), additional mutations in non-CHEK2 genes (n = 83), or biallelic mutations (n = 16) were excluded from phenotype analysis, as were cases with no clinical information provided. No significant phenotypic differences were observed between founder and non-founder CHEK2 + s. These data suggest that cancer risks reported for founder mutations may be generalizable to all CHEK2 + s, particularly for breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cancergen.2016.08.005 | DOI Listing |
Breast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFJAMA Netw Open
December 2024
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
Importance: Heterogeneity in development of estrogen receptor (ER)-specific first primary breast cancer exists due to deleterious germline variants in moderate- to high-penetrance breast cancer susceptibility genes, but it is unknown if these associations occur in ER-specific CBC.
Objective: To determine the association of deleterious germline variants in breast cancer susceptibility genes with ER-specific CBC development and whether ER status of the first primary breast cancer modifies these associations.
Design, Setting, And Participants: This case-control study included CBC cases and matched unilateral breast cancer controls from The Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study, a population-based case-control study.
JCO Glob Oncol
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México.
Purpose: Hereditary cancer syndromes (HCS) explain 5%-10% of all cancer cases. Patients with more than one germline pathogenic variant (GPV) result in a clinical syndrome known as multilocus inherited neoplasia allele syndrome (MINAS). In recent years, an increasing number of MINAS cases have been reported.
View Article and Find Full Text PDFJ Med Virol
January 2025
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!