In this study, a simple electrochemical procedure adaptable for using low specific activity W for separation and purification of Re from W to obtain no carrier added (NCA) Re is developed. The electrochemical parameters were optimized to maximize the Re electrodeposition yield with minimal W contamination. Two cycle electrolysis procedure was developed. The first electrochemical cell was used for separation of Re and in the second electrochemical cell, separation and purification of Re with >90% deposition yield of Re and minimal contamination of W (<10%) was achieved. The overall electrodeposition yield of Re was >90% with >99% radionuclidic purity and >99% radiochemical purity suitable for radiopharmaceutical applications. Furthermore, the performance of the generator remained consistent during a period of 69 days, one half-life of W, when the electrochemical separation procedure was performed frequently, at least once in 5 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2016.09.027 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Structural Chemistry, CHINA.
One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.
View Article and Find Full Text PDFSci Rep
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, 34517, Egypt.
RP-HPLC technique was developed and optimized for simultaneous identification and estimation of nirmatrelvir (NIR) and ritonavir (RIT) in their new copackaged tablet. Stability of nirmatrelvir (NIR) was studied after exposure to different five stress conditions; alkali, acid, heat, photo and oxidation degradation. The chromatographic separation was achieved using VDSpher PUR 100 ODS (4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, Environmental Science and Engineering, CHINA.
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!