A high-density array of plasmonic coaxial nanoantennas is used to enhance the two-photon absorption (TPA) process in a conventional silicon photodetector from a mode-locked 76 MHz Ti:sapphire laser over a spectral range from 1340 to 1550 nm. This enhanced TPA was used to generate an interferometric autocorrelation trace of a 150 fs laser pulse. Unlike second-harmonic generation, this technique does not require phase matching or a bulky crystal and can be used on a low-cost integrated silicon platform over a wide range of near-IR wavelengths compatible with modern commercial tunable femtosecond sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.004445 | DOI Listing |
Nanomaterials (Basel)
December 2024
State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.
Device simulation plays a crucial role in complementing experimental device characterisation by enabling deeper understanding of internal physical processes. However, for simulations to be trusted, experimental validation is essential to confirm the accuracy of the conclusions drawn. In the framework of semiconductor detector characterisation, one powerful tool for such validation is the Two Photon Absorption-Transient Current Technique (TPA-TCT), which allows for highly precise, three-dimensional spatially-resolved characterisation of semiconductor detectors.
View Article and Find Full Text PDFAnal Chem
January 2025
Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.
View Article and Find Full Text PDFChem Sci
December 2024
Institute of Advanced Materials, Wroclaw University of Science and Technology Wrocław Poland
Near-infrared (NIR) emitters with high two-photon absorption (2PA) cross-sections are of interest to enable imaging in the tissue transparency windows. This study explores the potential of DNA-stabilized silver nanoclusters (Ag -DNAs) as water-soluble two-photon absorbers. We investigate 2PA of four different atomically precise Ag -DNA species with far-red to NIR emission and varying nanocluster and ligand compositions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!