AI Article Synopsis

  • Microwave-frequency superconducting resonators are effective for qubit readout, two-qubit gates, and connecting distant quantum systems, requiring strong coupling to work effectively.
  • Achieving strong coupling involves correlating the spin and orbital degrees of freedom of an electron-qubit in a double quantum dot, using a nearby nanomagnet's inhomogeneous magnetic field.
  • The research suggests optimal placements for achieving different types of couplings and offers strategies to reduce errors in the coupling, aiming for over 90% fidelity in transferring states between the resonator and the electron spin.

Article Abstract

Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin- and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order ∼1 MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/46/464003DOI Listing

Publication Analysis

Top Keywords

single electron
12
microwave resonator
12
coupling single
8
electron spin
8
double quantum
8
quantum dot
8
coupling
7
spin
4
microwave
4
spin microwave
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!