Fast and slow life histories are proposed to covary with consistent individual differences in behaviour, but little is known whether it holds in the wild, where individuals experience natural fluctuations of the environment. We investigated whether individual differences in behaviour, such as movement traits and prey selection, are linked to variation in life-history traits in Eurasian perch (Perca fluviatilis) in the wild. Using high-resolution acoustic telemetry, we collected the positional data of fish in a whole natural lake and estimated individual movement traits by fitting a two-state correlated random walk model. Prey selection was inferred from stable isotope analysis using scale samples. Life-history traits were estimated by fitting a biphasic growth model to an individual growth trajectory back-calculated from scale samples. Life-history traits were correlated with behavioural traits such as movements and prey selection. Individuals with higher reproductive effort were found to switch more frequently between active and inactive modes and show greater reliance on prey from pelagic pathways (indicated by lower δ C). Further, individuals with faster juvenile growth were found to stay active for a longer time during the adult stage. Our results demonstrate the link between individual behavioural differences and fast-slow life-history traits under ecologically relevant conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.12603DOI Listing

Publication Analysis

Top Keywords

prey selection
16
life-history traits
16
individual differences
12
movements prey
8
differences behaviour
8
movement traits
8
scale samples
8
samples life-history
8
traits
7
individual
6

Similar Publications

Heavy metal pollution has complex impacts on terrestrial ecosystems, affecting biodiversity, trophic relationships, species health, and the quality of natural resources. This study aims to validate a non-invasive method for detecting heavy metals (Cd, As, Zn, Cu, Cr) in micromammalian prey, which constitute the primary diet of the common genet (), a mesocarnivore sensitive to habitat degradation. By focusing on prey remains (hair and bones) rather than entire fecal samples, this approach leverages the genet's selective feeding habits to assess the bioaccumulation of contaminants in its preferred prey.

View Article and Find Full Text PDF

Chemical signaling can play a crucial role in predator-prey dynamics. Here, we present evidence that ink from the common cuttlefish (Sepia officinalis) targets olfactory receptor proteins in shark, potentially acting as a predator deterrence. We apply in silico 3D docking analysis to investigate the binding affinity of various odorant molecules to shark olfactory receptors of two shark species: cloudy catshark (Scyliorhinus torazame) and white shark (Carcharodon carcharias).

View Article and Find Full Text PDF

While there are many works on the applications of machine learning, not so many of them are trying to understand the theoretical justifications to explain their efficiency. In this work, overfitting control (or generalization property) in machine learning is explained using analogies from physics and biology. For stochastic gradient Langevin dynamics, we show that the Eyring formula of kinetic theory allows to control overfitting in the algorithmic stability approach-when wide minima of the risk function with low free energy correspond to low overfitting.

View Article and Find Full Text PDF

Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals.

Curr Biol

December 2024

Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time. Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses. The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.

View Article and Find Full Text PDF

This study proposes and analyses a revised predator-prey model that accounts for a twofold Allee impact on the rate of prey population expansion. Employing the Caputo fractional-order derivative, we account for memory impact on the suggested model. We proceed to examine the significant mathematical aspects of the suggested model, including the uniqueness, non-negativity, boundedness, and existence of solutions to the noninteger order system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!