Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation‑induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α‑smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor‑β1 (TGF‑β1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme‑linked immunosorbent assay; TGF-β1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography‑mass spectrometry analysis. The deposition of collagen I and α‑SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF‑β1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1‑regulated TGF‑β1/Smad signaling was involved in silica inhalation‑induced lung fibrosis. Emodin attenuated this lung fibrosis to improve pulmonary function by targeting Sirt1, which regulated TGF-β1/Smad fibrotic signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102032PMC
http://dx.doi.org/10.3892/mmr.2016.5838DOI Listing

Publication Analysis

Top Keywords

lung fibrosis
32
pulmonary function
16
emodin
12
lung
12
lung tissue
12
fibrosis
9
pulmonary silicosis
8
fibrosis investigated
8
investigated pulmonary
8
silica inhalation‑induced
8

Similar Publications

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment.

J Cyst Fibros

January 2025

Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Introduction: Ca2+ signaling in fibroblasts would be one of the important mediators of lung fibrosis. This study investigated the relationship between calcium channel blocker usage and the risk of developing interstitial lung disease and idiopathic pulmonary fibrosis.

Material And Methods: This cohort study used data from the Korean National Health Screening Cohort spanned from January 1, 2004, to December 31, 2015.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.

View Article and Find Full Text PDF

EVALUATION OF THE EFFECTS OF FAVIPIRAVIR (T-705) ON THE LUNG TISSUE OF HEALTY RATS: AN EXPERIMENTAL STUDY.

Food Chem Toxicol

January 2025

Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039 Kayseri, Turkey. Electronic address:

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor widely used during the COVID-19 pandemic, effectively reduces viral load but has been linked to inflammatory changes in tissues such as the liver and kidneys. High-dose and prolonged use of favipiravir for COVID-19 raises concerns about its potential toxic effects on the lungs, particularly in patients with pre-existing pulmonary conditions. This study investigated favipiravir's effects on lung tissue in healthy rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!