Investigating the Vascular Phenotype of Subcutaneously and Orthotopically Propagated PC3 Prostate Cancer Xenografts Using Combined Carbogen Ultrasmall Superparamagnetic Iron Oxide MRI.

Top Magn Reson Imaging

*Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey †Centre for Advanced Biomedical Imaging, Department of Medicine and Institute of Child Health, University College London, London ‡R&D Personalised Healthcare & Biomarkers, AstraZeneca, Alderley Park, Macclesfield, UK.

Published: October 2016

The aim of this study was to use the combined carbogen-ultrasmall superparamagnetic iron oxide (CUSPIO) magnetic resonance imaging (MRI) method, which uses spatial correlations in independent susceptibility imaging biomarkers, to investigate and compare the impact of tumor size and anatomical site on vascular structure and function in vivo. Mice bearing either subcutaneous or orthotopic PC3 LN3 prostate tumors were imaged at 7 T, using a multi-gradient echo sequence to quantify R2, before and during carbogen (95% O2/5% CO2) breathing, and subsequently following intravenous administration of USPIO particles. Carbogen and USPIO-induced changes in R2 were used to inform on hemodynamic vasculature and fractional blood volume (%), respectively. The CUSPIO imaging data were also segmented to identify and assess five categories of R2 response. Small and large subcutaneous and orthotopic tumor cohorts all exhibited significantly (P < 0.05) different median baseline R2, ΔR2carbogen, and fractional blood volume. CUSPIO imaging showed that small subcutaneous tumors predominantly exhibited a negative ΔR2carbogen followed by a positive ΔR2USPIO, consistent with a well perfused tumor vasculature. Large subcutaneous tumors exhibited a small positive ΔR2carbogen and relatively low fractional blood volume, suggesting less functional vasculature. Orthotopic tumors revealed a large, positive ΔR2carbogen, consistent with vascular steal, and which may indicate that vascular function is more dependent on site of implantation than tumor size. Regions exhibiting significant ΔR2carbogen, but no significant ΔR2USPIO, suggesting transient vascular shutdown over the experimental timecourse, were apparent in all 3 cohorts. CUSPIO imaging can inform on efficient drug delivery via functional vasculature in vivo, and on appropriate tumor model selection for pre-clinical therapy trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068556PMC
http://dx.doi.org/10.1097/RMR.0000000000000102DOI Listing

Publication Analysis

Top Keywords

superparamagnetic iron
8
iron oxide
8
subcutaneous orthotopic
8
investigating vascular
4
vascular phenotype
4
phenotype subcutaneously
4
subcutaneously orthotopically
4
orthotopically propagated
4
propagated pc3
4
pc3 prostate
4

Similar Publications

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

This systematic review and meta-analysis protocol aims to evaluate the comparative efficacy of different sentinel lymph node (SLN) detection techniques in the management of vulvar cancer. Vulvar cancer, though rare, predominantly affects older women and requires effective management strategies. The SLN technique has become a standard approach for early-stage cases, offering reduced morbidity compared to complete lymphadenectomy.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!