Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering.

Biotechnol Bioeng

Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, University Hospital, Ludwig-Maximillians-University of Munich, Nussbaumstr. 20, Munich 80336, Germany.

Published: April 2017

AI Article Synopsis

  • Bone tissue engineering (BTE) using biomaterial scaffolds and human mesenchymal stem cells (hMSCs) shows promise for treating bone defects, with key factors like cell density and oxygen supply affecting tissue quality.
  • A new oxygen-imaging sensor was developed to monitor oxygen levels in 3D scaffolds and evaluate different cell-seeding strategies with hMSCs.
  • Findings indicated that lower cell seeding densities resulted in faster oxygen consumption, while higher densities slowed it down, highlighting the importance of both seeding strategy and harvest density for improving BTE outcomes.

Article Abstract

Bone tissue engineering (BTE) utilizing biomaterial scaffolds and human mesenchymal stem cells (hMSCs) is a promising approach for the treatment of bone defects. The quality of engineered tissue is crucially affected by numerous parameters including cell density and the oxygen supply. In this study, a novel oxygen-imaging sensor was introduced to monitor the oxygen distribution in three dimensional (3D) scaffolds in order to analyze a new cell-seeding strategy. Immortalized hMSCs, pre-cultured in a monolayer for 30-40% or 70-80% confluence, were used to seed demineralized bone matrix (DBM) scaffolds. Real-time measurements of oxygen consumption in vitro were simultaneously performed by the novel planar sensor and a conventional needle-type sensor over 24 h. Recorded oxygen maps of the novel planar sensor revealed that scaffolds, seeded with hMSCs harvested at lower densities (30-40% confluence), exhibited rapid exponential oxygen consumption profile. In contrast, harvesting cells at higher densities (70-80% confluence) resulted in a very slow, almost linear, oxygen decrease due to gradual achieving the stationary growth phase. In conclusion, it could be shown that not only the seeding density on a scaffold, but also the cell density at the time point of harvest is of major importance for BTE. The new cell seeding strategy of harvested MSCs at low density during its log phase could be a useful strategy for an early in vivo implantation of cell-seeded scaffolds after a shorter in vitro culture period. Furthermore, the novel oxygen imaging sensor enables a continuous, two-dimensional, quick and convenient to handle oxygen mapping for the development and optimization of tissue engineered scaffolds. Biotechnol. Bioeng. 2017;114: 894-902. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084321PMC
http://dx.doi.org/10.1002/bit.26202DOI Listing

Publication Analysis

Top Keywords

oxygen
9
oxygen mapping
8
seeding strategy
8
bone tissue
8
tissue engineering
8
cell density
8
70-80% confluence
8
oxygen consumption
8
novel planar
8
planar sensor
8

Similar Publications

The cation of the title salt, CHNO ·Br, has a dihedral angle of 24.26 (6)° between its fused imidazole and 4-nitro-phenyl rings and the N-C-C-O torsion angle associated with the hy-droxy-ethyl substituent is 60.15 (17)°.

View Article and Find Full Text PDF

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

December 2024

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

Background: Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken.

View Article and Find Full Text PDF

VA-ECOM assisted percutaneous mechanical thrombectomy treatment high-risk pulmonary embolism.

Front Cardiovasc Med

December 2024

Department of Vascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Background: Percutaneous mechanical thrombectomy (PMT) is increasingly used in the treatment of intermediate and high-risk acute pulmonary embolism (PE), and the treatment of high-risk PE with the aid of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) has also been reported. However, there are few reports of VA-ECOM-assisted PMT in the treatment of high-risk PE. The purpose of this study is to summarize the data of 11 patients with high-risk PE treated with VA-ECMO assisted PMT, and propose feasible treatment methods for such patients.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!