Vascular endothelial growth factor (VEGF) is well established as the main agent responsible for vascular leakage and angiogenesis in the diabetic retina. While VEGF can have positive effects on hyperglycemia stressed retinal tissues, it also plays a role in events progressing to the oxygen- stressed, i.e. hypoxic, diabetic retina. Some VEGF makes its way to the retina from systemic sources and some is produced locally within the eye. Hyperglycemia, oxidants, inflammation, and advanced glycation end-products are all stimulants to VEGF production, both in the hypoxic and the pre-hypoxic retina. Endothelial cells, pericytes, Müller cells, microglia, astrocytes, retinal pigment epithelium and neurons have all been known to produce VEGF at some point in retinal development or in disease. Excessive VEGF production in the early diabetic retina can lead to retinal exposure or mechanisms which exacerbate further damage. While Müller cells are likely the most significant producer of VEGF in the pre-hypoxic retina, other VEGF producing cells may also play a role due to their proximity to vessels or neurons. Study of the release of VEGF by retinal cells in hyperglycemia conditions, may help identify targets for early treatment and prevent the serious consequences of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573399812666161007165944 | DOI Listing |
Biomolecules
January 2025
Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, 35127 Padova, Italy.
Omega-3 fatty acids are critical components of cell membranes, including those in the retina. Specifically, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the primary omega-3 fatty acids that have been studied for their potential benefits in retinal health, preventing the progression of retinopathy. Several studies have shown that a higher intake of omega-3 fatty acids is associated with a lower risk of developing diabetic retinopathy and age-related macular degeneration (AMD).
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering & Information Systems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Fundus imaging, a technique for recording retinal structural components and anomalies, is essential for observing and identifying ophthalmological diseases. Disorders such as hypertension, glaucoma, and diabetic retinopathy are indicated by structural alterations in the optic disc, blood vessels, fovea, and macula. Patients frequently deal with various ophthalmological conditions in either one or both eyes.
View Article and Find Full Text PDFBMJ Open Ophthalmol
January 2025
School of Population Health, University of Auckland, Auckland, New Zealand
Background: This systematic review and meta-analysis assesses the association of arterial stiffness with age-related macular degeneration (AMD), glaucoma, retinal vein occlusion (RVO) and retinopathy (diabetic and hypertensive).
Methods: Medline and Embase were systematically searched for observational studies of arterial stiffness and eye disease. Cohort studies were included if they estimated arterial stiffness using any measures based on the arterial waveform, with cross-sectional and case-control studies limited to measures of pulse wave velocity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!