Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology.

Cancer Med

Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.

Published: November 2016

Cancer is one of the most common causes of death worldwide. Available treatments are associated with numerous side effects and only a low percentage of patients achieve complete remission. Therefore, there is a strong need for new therapeutic strategies. In this regard, pulsed electromagnetic field (PEMF) therapy presents several potential advantages including non-invasiveness, safety, lack of toxicity for non-cancerous cells, and the possibility of being combined with other available therapies. Indeed, PEMF stimulation has already been used in the context of various cancer types including skin, breast, prostate, hepatocellular, lung, ovarian, pancreatic, bladder, thyroid, and colon cancer in vitro and in vivo. At present, only limited application of PEMF in cancer has been documented in humans. In this article, we review the experimental and clinical evidence of PEMF therapy discussing future perspectives in its use in oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119968PMC
http://dx.doi.org/10.1002/cam4.861DOI Listing

Publication Analysis

Top Keywords

pulsed electromagnetic
8
electromagnetic field
8
pemf therapy
8
mechanisms therapeutic
4
therapeutic effectiveness
4
effectiveness pulsed
4
field therapy
4
therapy oncology
4
cancer
4
oncology cancer
4

Similar Publications

Impact of Thermal, High-Pressure, and Pulsed Electric Field Treatments on the Stability and Antioxidant Activity of Phenolic-Rich Apple Pomace Extracts.

Molecules

December 2024

Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

Apple pomace, a by-product of apple juice production, is typically discarded as waste. Recent approaches have focused on utilizing apple pomace by extracting beneficial bioactive compounds, such as antioxidant phenolic compounds (PCs). Before these PC-rich extracts can be used in food products, they must undergo food preservation and processing methods.

View Article and Find Full Text PDF

Nondestructive Monitoring of Textile-Reinforced Cementitious Composites Subjected to Freeze-Thaw Cycles.

Materials (Basel)

December 2024

Department of Mechanics of Materials and Constructions, Faculty of Engineering, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.

Cementitious materials are susceptible to damage not only from mechanical loading, but also from environmental (physical, chemical, and biological) factors. For Textile-Reinforced Cementitious (TRC) composites, durability poses a significant challenge, and a reliable method to assess long-term performance is still lacking. Among various durability attacks, freeze-thaw can induce internal cracking within the cementitious matrix, and weaken the textile-matrix bond.

View Article and Find Full Text PDF

Pulsed Electromagnetic Fields (PEMF) are widely used, with excellent clinical outcomes. However, their mechanism of action has not yet been completely understood. The purpose of this review is to describe current observations on the mechanisms of PEMF, together with its clinical efficacy.

View Article and Find Full Text PDF

The use of Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy during general anesthesia has not previously been reported in horses. This randomized, investigator-blinded, placebo-controlled trial evaluates equine cardiopulmonary function and recovery quality after BEMER therapy application for 15 min in 100 horses during general anesthesia using isoflurane for pars-plana vitrectomy surgery as treatment for recurrent uveitis. Visually identical blankets were used in the two groups (1:1 ratio), one with a functional BEMER module and the other with a placebo module.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!