Expression of calmodulin in Drosophila is highly regulated in a stage- and tissue-specific manner.

Dev Genes Evol

Department of Biochemistry and Cell Biology, MS 140, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA, , , , , , US.

Published: May 1997

 The expression of the Drosophila calmodulin (CAM) gene is surprisingly complex. The nervous system, which shows intense transcription in embryogenesis, contains no detectable transcripts at the end of larval life, but becomes transcriptionally active again at pupariation. The gut shows high levels of expression throughout the life cycle, except during pupal reorganization. In contrast, CAM expression in the thoracic muscles drops significantly on transition from pupal to adult life. In the testis, transcription is strongly up-regulated prior to meiosis. Growing cells show lower transcript levels than most differentiated tissues and in general, cells with intense exocytotic or endocytotic activity show the highest mRNA levels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004270050085DOI Listing

Publication Analysis

Top Keywords

expression
4
expression calmodulin
4
calmodulin drosophila
4
drosophila highly
4
highly regulated
4
regulated stage-
4
stage- tissue-specific
4
tissue-specific manner
4
manner  the
4
 the expression
4

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.

View Article and Find Full Text PDF

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!