A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The polynuclear complex CuIpy loaded in mesoporous silica: photophysics, theoretical investigation, and highly sensitive oxygen sensing application. | LitMetric

The polynuclear complex CuIpy has been largely studied in solution and in the powder form due to its interesting luminescent properties, which are largely dependent on temperature and pressure. In this work, we present the synthesis of the complex and its wet impregnation in a mesoporous silica host obtained by sol-gel methodology. For optimized loadings, the well-dispersed guest molecules exhibit strong interaction with molecular oxygen, resulting in a significant quenching of the luminescence. The process is highly reversible with a Stern-Volmer constant of K = 33.8, which is the largest value found in the literature for similar complexes in the solid state, suggesting that the new material is a promising candidate for high sensitivity oxygen sensing. Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations reveal a weak intermolecular interaction between the two guest complexes in the excited state, suggesting the formation of an excited state complex (excimer). The assumption of a triplet excimer formation is confirmed by temperature- and concentration-dependent experiments, which provides a new way to explain the giant Stokes shift observed for the guest complex in different media.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt03121hDOI Listing

Publication Analysis

Top Keywords

polynuclear complex
8
complex cuipy
8
mesoporous silica
8
oxygen sensing
8
state suggesting
8
excited state
8
cuipy loaded
4
loaded mesoporous
4
silica photophysics
4
photophysics theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!