Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment.

Med Eng Phys

Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, Anglesea Road, Portsmouth PO1 3DJ, UK . Electronic address:

Published: December 2016

AI Article Synopsis

Article Abstract

Periprosthetic bone strain distributions in some of the typical cases of total knee replacement (TKR) were studied with regard to the selection of material, design and the alignments of tibial components to examine which conditions are more forgiving than the others to stress shielding post a TKR. Four tibial components with two implant designs (cruciate sacrificing and cruciate retaining) and material properties (metal-backed (MB) and all-polyethylene (AP)) were considered in a specimen-specific finite element tibia bone model loaded in a neutral position. The influence of tibial material and design on the periprosthetic bone strain response was investigated under the peak loads of walking and stair descending/ascending. Two of the models were also modified to examine the effect of selected implant malalignment conditions (7° posterior, 5° valgus and 5° varus) on stress shielding in the bone, where the medio-lateral load share ratios were adjusted accordingly. The predicted increases of bone density due to implantation for the selected cases studied were also presented. For the cases examined, the effect of stress shielding on the periprosthetic bone seems to be more significantly influenced by the implant material than by the implant geometry. Significant stress shielding is found in MB cases, as opposed to increase in bone density found in AP cases, particularly in the bones immediately beneath the baseplate. The effect of stress shielding is reduced somewhat for the MB components in the malaligned positions compared with the neutral case. In AP cases, the effect of stress shielding is mostly low except in the varus position, possibly due to off-loading of lateral condyle. Increases in bone density are found in both MB and AP cases for the malaligned conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2016.09.018DOI Listing

Publication Analysis

Top Keywords

stress shielding
28
periprosthetic bone
16
material design
12
bone density
12
bone
9
shielding periprosthetic
8
total knee
8
knee replacement
8
implant material
8
bone strain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!