Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis.

Am J Hum Genet

Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Evolution and Genomic Science, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Center, Manchester 03101, UK. Electronic address:

Published: November 2016

In this exciting era of "next-gen cytogenetics," integrating genomic sequencing into the prenatal diagnostic setting is possible within an actionable time frame and can provide precise delineation of balanced chromosomal rearrangements at the nucleotide level. Given the increased risk of congenital abnormalities in newborns with de novo balanced chromosomal rearrangements, comprehensive interpretation of breakpoints could substantially improve prediction of phenotypic outcomes and support perinatal medical care. Herein, we present and evaluate sequencing results of balanced chromosomal rearrangements in ten prenatal subjects with respect to the location of regulatory chromatin domains (topologically associated domains [TADs]). The genomic material from all subjects was interpreted to be "normal" by microarray analyses, and their rearrangements would not have been detected by cell-free DNA (cfDNA) screening. The findings of our systematic approach correlate with phenotypes of both pregnancies with untoward outcomes (5/10) and with healthy newborns (3/10). Two pregnancies, one with a chromosomal aberration predicted to be of unknown clinical significance and another one predicted to be likely benign, were terminated prior to phenotype-genotype correlation (2/10). We demonstrate that the clinical interpretation of structural rearrangements should not be limited to interruption, deletion, or duplication of specific genes and should also incorporate regulatory domains of the human genome with critical ramifications for the control of gene expression. As detailed in this study, our molecular approach to both detecting and interpreting the breakpoints of structural rearrangements yields unparalleled information in comparison to other commonly used first-tier diagnostic methods, such as non-invasive cfDNA screening and microarray analysis, to provide improved genetic counseling for phenotypic outcome in the prenatal setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097935PMC
http://dx.doi.org/10.1016/j.ajhg.2016.08.022DOI Listing

Publication Analysis

Top Keywords

chromosomal rearrangements
16
balanced chromosomal
12
sequencing prenatal
8
cfdna screening
8
structural rearrangements
8
rearrangements
7
structural chromosomal
4
rearrangements require
4
require nucleotide-level
4
nucleotide-level resolution
4

Similar Publications

Introduction: This study investigated the impact of the carrier on transferable blastocyst rate and live birth outcomes in couples with structural chromosomal abnormalities.

Methods: Couples were grouped into reciprocal translocation, Robertsonian translocation, or inversions groups, and clinical data were retrospectively analyzed. Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) was conducted, and pregnancy outcomes were compared.

View Article and Find Full Text PDF

Genome-wide maps of highly-similar intrachromosomal repeats that can mediate ectopic recombination in three human genome assemblies.

HGG Adv

December 2024

International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México. Electronic address:

Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation through structural rearrangements. Several mechanisms of structural variation formation use shared nucleotide similarity between repeated sequences as substrate for ectopic recombination. We performed genome-wide analyses of direct and inverted intrachromosomal repeated sequence pairs with >200bp and >80% sequence identity in three human genome assemblies, GRCh37, GRCh38, and the T2T-CHM13 alternate assembly.

View Article and Find Full Text PDF

Background: Primary squamous cell carcinoma (SCC) of the middle ear is rare, with non-keratinizing basaloid types being exceptionally uncommon. Distinguishing these cancers, often caused by viral factors (, human papillomavirus or Epstein-Barr virus), or specific genetic alterations (, bromodomain-containing protein 4-nuclear protein in or gene fused with FLI chromosomal rearrangement), from other cranial conditions, is difficult. The recently identified DEK::AFF2 non-keratinizing SCC (NKSCC) is a novel subtype, fitting the World Health Organization classification of head and neck neoplasms.

View Article and Find Full Text PDF

The green alga (formerly ) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the genome, further validated by Sanger sequencing of heterozygous regions.

View Article and Find Full Text PDF

This study explored the genomic alterations in , a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!