Despite long-term successful treatment with cART, impairments in cognitive functioning are still being reported in HIV-infected patients. Since changes in cognitive function may be preceded by subtle changes in brain function, neuroimaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) have become useful tools in assessing HIV-associated abnormalities in the brain. The purpose of the current study was to examine the extent to which HIV infection in virologically suppressed patients is associated with disruptions in subcortical regions of the brain in comparison to a matched HIV-negative control group. The sample consisted of 72 patients and 39 controls included between January 2012 and January 2014. Resting state functional connectivity was determined between fourteen regions-of-interest (ROI): the left and right nucleus accumbens, amygdala, caudate nucleus, hippocampus, putamen, pallidum and thalamus. A Bayesian method was used to estimate resting-state functional connectivity, quantified in terms of partial correlations. Both groups showed the strongest partial correlations between the left and right caudate nucleus and the left and right thalamus. However, no differences between the HIV patients and controls were found between the posterior expected network densities (control network density = 0.26, SD = 0.05, patient network density = 0.26, SD = 0.04, p = 0.58). The results of the current study show that HIV does not affect subcortical connectivity in virologically controlled patients who are otherwise healthy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653703PMC
http://dx.doi.org/10.1007/s11682-016-9632-4DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
hiv-infected patients
8
resting-state functional
8
current study
8
patients controls
8
caudate nucleus
8
partial correlations
8
network density = 026
8
patients
6
resting-state subcortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!