https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=27744291&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2774429120191120
2046-63905102016Oct15Biology openBiol OpenRefilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics.135113611351-136110.1242/bio.019588Refilins (RefilinA and RefilinB) are members of a novel family of Filamin binding proteins that function as molecular switches to conformationally alter the Actin filament network into bundles. We show here that Refilins are extremely labile proteins. An N-terminal PEST/DSG(X)2-4S motif mediates ubiquitin-independent rapid degradation. A second degradation signal is localized within the C-terminus. Only RefilinB is protected from rapid degradation by an auto-inhibitory domain that masks the PEST/DSG(X)2-4S motif. Dual regulation of RefilinA and RefilinB stability was confirmed in rat brain NG2 precursor cells (polydendrocyte). Using loss- and gain-of-function approaches we show that in these cells, and in U373MG cells, Refilins contribute to the dynamics of lamellipodium protrusion by catalysing Actin bundle formation within the lamella Actin network. These studies extend the Actin bundling function of the Refilin-Filamin complex to dynamic regulation of cell membrane remodelling.© 2016. Published by The Company of Biologists Ltd.GayOliviaOINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France CEA, BIG, BGE, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.GilquinBenoîtBINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France CEA, BIG, BGE, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.AssardNicoleNINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France CEA, BIG, BGE, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.StuelsatzPascalPINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.DelphinChristianCINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.LachuerJoëlJGenomic and Microgenomic Platform, ProfileXpert, Bron F-69676, France Lyon Neuroscience Research Center INSERM U1028/CNRS UMR 5292, Lyon F-69372, France.GidrolXavierXINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France CEA, BIG, BGE, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France.BaudierJacquesJINSERM U873 and INSERM Unité 1038, Grenoble F-38000, France CEA, BIG, BGE, Grenoble F-38000, France Université Grenoble Alpes, Grenoble F-38000, France jacques.baudier@univ-amu.fr.engJournal Article20161015
EnglandBiol Open1015780182046-6390FAM101AFAM101BFilaminAPolydendrocyteRefilinARefilinBThe authors declare no competing or financial interests.
20161017602016101760201610176120161015epublish27744291PMC508768210.1242/bio.0195885/10/1351Balenci L., Clarke I. D., Dirks P. B., Assard N., Ducray F., Jouvet A., Belin M.-F., Honnorat J. and Baudier J. (2006). IQGAP1 protein specifies amplifying cancer cells in glioblastoma multiforme. Cancer Res. 66, 9074-9082. 10.1158/0008-5472.CAN-06-076110.1158/0008-5472.CAN-06-076116982749Burnette D. T., Manley S., Sengupta P., Sougrat R., Davidson M. W., Kachar B. and Lippincott-Schwartz J. (2011). A role for Actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13, 371-381. 10.1038/ncb220510.1038/ncb2205PMC364648121423177Busino L., Donzelli M., Chiesa M., Guardavaccaro D., Ganoth D., Dorrello N. V., Hershko A., Pagano M. and Draetta G. F. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426, 87-91. 10.1038/nature0208210.1038/nature0208214603323Doetsch F., Petreanu L., Caille I., Garcia-Verdugo J.-M. and Alvarez-Buylla A. (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021-1034. 10.1016/S0896-6273(02)01133-910.1016/S0896-6273(02)01133-912495619Feng Y. and Walsh C. A. (2004). The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 6, 1034-1038. 10.1038/ncb1104-103410.1038/ncb1104-103415516996Feng Y., Chen M. H., Moskowitz I. P., Mendonza A. M., Vidali L., Nakamura F., Kwiatkowski D. J. and Walsh C. A. (2006). Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. USA 103, 19836-19841. 10.1073/pnas.060962810410.1073/pnas.0609628104PMC170253017172441Fevre-Montange M., Champier J., Szathmari A., Wierinckx A., Mottolese C., Guyotat J., Figarella-Branger D., Jouvet A. and Lachuer J. (2006). Microarray analysis reveals differential gene expression patterns in tumors of the pineal region. J. Neuropathol. Exp. Neurol. 65, 675-684. 10.1097/01.jnen.0000225907.90052.e310.1097/01.jnen.0000225907.90052.e316825954Gay O., Gilquin B., Pitaval A. and Baudier J. (2011a). Refilins: a link between perinuclear Actin bundle dynamics and mechanosensing signaling. BioArchitecture 1, 245-249. 10.4161/bioa.1824610.4161/bioa.18246PMC338457822754617Gay O., Gilquin B., Nakamura F., Jenkins Z. A., McCartney R., Krakow D., Deshiere A., Assard N., Hartwig J. H., Robertson S. P. et al. (2011b). RefilinB (FAM101B) targets FilaminA to organize perinuclear Actin networks and regulates nuclear shape. Proc. Natl. Acad. Sci. USA 108, 11464-11469. 10.1073/pnas.110421110810.1073/pnas.1104211108PMC313625521709252Gay O., Nakamura F. and Baudier J. (2011c). Refilin holds the cap. Commun. Integr. Biol. 4, 791-795. 10.4161/cib.1791110.4161/cib.17911PMC330636222446558He Y., Ren Y., Wu B., Decourt B., Lee A. C., Taylor A. and Suter D. M. (2015). Src and cortActin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol. Biol. Cell 26, 3229-3244. 10.1091/mbc.E15-03-014210.1091/mbc.E15-03-0142PMC456931426224308Henson J. H., Yeterian M., Weeks R. M., Medrano A. E., Brown B. L., Geist H. L., Pais M. D., Oldenbourg R. and Shuster C. B. (2015). Arp2/3 complex inhibition radically alters lamellipodial Actin architecture, suspended cell shape, and the cell spreading process. Mol. Biol. Cell 26, 887-900. 10.1091/mbc.E14-07-124410.1091/mbc.E14-07-1244PMC434202525568343Hirano M., Murata T., Furushima K., Kiyonari H., Nakamura M., Suda Y. and Aizawa S. (2005). cfm is a novel gene uniquely expressed in developing forebrain and midbrain, but its null mutant exhibits no obvious phenotype. Gene Expr. Patterns 5, 439-444. 10.1016/j.modgep.2004.09.00210.1016/j.modgep.2004.09.00215661651Hotulainen P. and Hoogenraad C. C. (2010). Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619-629. 10.1083/jcb.20100300810.1083/jcb.201003008PMC287291220457765Kirby B. B., Takada N., Latimer A. J., Shin J., Carney T. J., Kelsh R. N. and Appel B. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9, 1506-1511. 10.1038/nn180310.1038/nn180317099706Krakow D., Robertson S. P., King L. M., Morgan T., Sebald E. T., Bertolotto C., Wachsmann-Hogiu S., Acuna D., Shapiro S. S., Takafuta T. et al. (2004). Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat. Genet. 36, 405-410. 10.1038/ng131910.1038/ng131914991055Livak K. J. and Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. 10.1006/meth.2001.126210.1006/meth.2001.126211846609Lu J., Lian G., Lenkinski R., De Grand A., Vaid R. R., Bryce T., Stasenko M., Boskey A., Walsh C. and Sheen V. (2007). Filamin B mutations cause chondrocyte defects in skeletal development. Hum. Mol. Genet. 16, 1661-1675. 10.1093/hmg/ddm11410.1093/hmg/ddm11417510210Mathes E., O'Dea E. L., Hoffmann A. and Ghosh G. (2008). NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J. 27, 1357-1367. 10.1038/emboj.2008.7310.1038/emboj.2008.73PMC237484918401342Mathes E., Wang L., Komives E. and Ghosh G. (2010). Flexible regions within I{kappa}B{alpha} create the ubiquitin-independent degradation signal. J. Biol. Chem. 285, 32927-32936. 10.1074/jbc.M110.10732610.1074/jbc.M110.107326PMC296339320682784Mejillano M. R., Kojima S.-I., Applewhite D. A., Gertler F. B., Svitkina T. M. and Borisy G. G. (2004). Lamellipodial versus filopodial mode of the Actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363-373. 10.1016/j.cell.2004.07.01910.1016/j.cell.2004.07.01915294161Mizuhashi K., Kanamoto T., Moriishi T., Muranishi Y., Miyazaki T., Terada K., Omori Y., Ito M., Komori T. and Furukawa T. (2014). Filamin-interActing proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum. Mol. Genet. 23, 2953-2967. 10.1093/hmg/ddu00710.1093/hmg/ddu00724436304Nemethova M., Auinger S. and Small J. V. (2008). Building the Actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol. 180, 1233-1244. 10.1083/jcb.20070913410.1083/jcb.200709134PMC229084818362182Nishiyama A., Komitova M., Suzuki R. and Zhu X. (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9-22. 10.1038/nrn249510.1038/nrn249519096367Nishiyama A., Boshans L., Goncalves C. M., Wegrzyn J. and Patel K. D. (2015). Lineage, fate, and fate potential of NG2-glia. Brain Res. 1, 116-28. 10.1016/j.brainres.2015.08.01310.1016/j.brainres.2015.08.013PMC476152826301825Pak C. W., Flynn K. C. and Bamburg J. R. (2008). Actin-binding proteins take the reins in growth cones. Nat. Rev. Neurosci. 9, 136-147. 10.1038/nrn223610.1038/nrn223618209731Popowicz G. M., Schleicher M., Noegel A. A. and Holak T. A. (2006). Filamins: promiscuous organizers of the cytoskeleton. Trends Biochem. Sci. 31, 411-419. 10.1016/j.tibs.2006.05.00610.1016/j.tibs.2006.05.00616781869Robertson S. P., Twigg S. R. F., Sutherland-Smith A. J., Biancalana V., Gorlin R. J., Horn D., Kenwrick S. J., Kim C. A., Morava E., Newbury-Ecob R. et al. (2003). Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat. Genet. 33, 487-491. 10.1038/ng111910.1038/ng111912612583Schaefer A. W., Kabir N. and Forscher P. (2002). Filopodia and Actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J. Cell Biol. 158, 139-152. 10.1083/jcb.20020303810.1083/jcb.200203038PMC217302912105186Sheen V. L., Dixon P. H., Fox J. W., Hong S. E., Kinton L., Sisodiya S. M., Duncan J. S., Dubeau F., Scheffer I. E., Schachter S. C. et al. (2001). Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum. Mol. Genet. 10, 1775-1783. 10.1093/hmg/10.17.177510.1093/hmg/10.17.177511532987Stossel T. P., Condeelis J., Cooley L., Hartwig J. H., Noegel A., Schleicher M. and Shapiro S. S. (2001). Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138-145. 10.1038/3505208210.1038/3505208211252955Suzuki T., Osumi N. and Wakamatsu Y. (2010). Stabilization of ATF4 protein is required for the regulation of epithelial-mesenchymal transition of the avian neural crest. Dev. Biol. 344, 658-668. 10.1016/j.ydbio.2010.05.49210.1016/j.ydbio.2010.05.49220580702Tang D. G., Tokumoto Y. M. and Raff M. C. (2000). Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol. 148, 971-984. 10.1083/jcb.148.5.97110.1083/jcb.148.5.971PMC217454110704447Willems E., Mateizel I., Kemp C., Cauffman G., Sermon K. and Leyns L. (2006). Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int. J. Dev. Biol. 50, 627-635. 10.1387/ijdb.052130ew10.1387/ijdb.052130ew16892176Wood W. and Martin P. (2002). Structures in focus--filopodia. Int. J. Biochem. Cell Biol. 34, 726-730. 10.1016/S1357-2725(01)00172-810.1016/S1357-2725(01)00172-811950590Zhou B. P., Deng J., Xia W., Xu J., Li Y. M., Gunduz M. and Hung M.-C. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931-940. 10.1038/ncb117310.1038/ncb117315448698Zhou A.-X., Hartwig J. H. and Akyurek L. M. (2010). Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113-123. 10.1016/j.tcb.2009.12.00110.1016/j.tcb.2009.12.00120061151