Immunolocalization of cuticular proteins in Johnston's organ and the corneal lens of Anopheles gambiae.

Arthropod Struct Dev

Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA. Electronic address:

Published: November 2016

Previous work with EM immunolocalization examined the intracuticular placement of several antibodies directed against cuticular proteins (CPs) in various structures of Anopheles gambiae. Those structures had long stretches of fairly uniform cuticle. We have now used 19 antibodies directed against members of five CP families on two adult structures with considerable complexity, Johnston's organ and the corneal lens of the compound eye. We also localized chitin with colloidal-gold labeled wheat germ agglutinin. Twelve of these antibodies recognized structures in Johnston's organ. Only 6 were detected in the outer pedicel wall, but the internal structures were more complex with distinct distributions of members of the five CP families in six different structures. The corneal lens had four distinct regions of laminar cuticle. Thirteen of the 15 members of the CPR family were detected, none from the other CP families. Specific antibodies were localized to different regions and in different laminae within a region. The specificity of deployment of cuticular proteins revealed in this study is helping to explain why An. gambiae allocates about 2% of its protein coding genes to structural CPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228451PMC
http://dx.doi.org/10.1016/j.asd.2016.10.006DOI Listing

Publication Analysis

Top Keywords

cuticular proteins
12
johnston's organ
12
corneal lens
12
organ corneal
8
anopheles gambiae
8
antibodies directed
8
members families
8
structures
6
immunolocalization cuticular
4
proteins johnston's
4

Similar Publications

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Differential genome-wide expression profiles in response to high temperatures in the two body-color morphs of the pea aphid.

Int J Biol Macromol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:

Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PARs and PAGs increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.

View Article and Find Full Text PDF

Proteomic Analysis of Single Hairs.

Methods Mol Biol

December 2024

University of California - Davis, Department of Environmental Toxicology, Davis, CA, USA.

Hair is a ubiquitous and robust mammalian tissue with biological, clinical, forensic, social, and economic significance. The hair shaft proteome reflects both structural proteins, dominated by cuticular intermediate filament keratins and associated proteins, and proteins involved in the final cellular processes of terminally differentiating corneocytes prior to cornification. These distinct biological processes involve cell maintenance, biosynthesis, senescence, and xenobiotic response.

View Article and Find Full Text PDF

Waxy cuticle covers plant aerial organs and protects plants against environmental challenges. Although improved cuticle-associated traits are aimed at the wheat breeding programs, the mechanism governing wheat cuticular wax biosynthesis remains to be elucidated. Herein, wheat WW domain-containing protein TaCFL1 is characterized as a negative regulator of wax biosynthesis.

View Article and Find Full Text PDF

Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5.

Plant Cell Environ

December 2024

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.

Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!